Matemática, perguntado por Lolahuljis, 1 ano atrás

B) log(2x+10) - log(x+1)= log 4
C) log6 (x-5) + log6 (x+5)= log6 11

No gabarito diz que a B= S{3} C={6}

Soluções para a tarefa

Respondido por BashKnocker
2
B) log(2x + 10) - log(x + 1) = log 4
\log(2(x+5))-\log(x+1)=log(2^2)\\\\
\log(2)+\log(x+5)-\log(x+1)=2log(2)\\\\
\log(x+5)-\log(x+1)=\log(2)\\\\
\log(x+5)=\log(2)+\log(x+1)\\\\
\log(x+5)=\log(2(x+1))\\\\
\log(2(x+1))-\log(x+5)=0\\\\
\log(\frac{2(x+1)}{x+5} )=0\\\\
10^0 = \frac{2(x+1)}{x+5}\\\\
\frac{2(x+1)}{x+5} = 1 \\\\
2(x+1) = x+5\\\\
2x + 2 = x + 5\\\\
\boxed{x = 3}

S={3}

C) log6 (x-5) + log6 (x+5)= log6 11
\log_6(x-5) + \log_6(x+5) = \log_6(11)\\\\
\log_6((x-5)\times(x+5)) = \log_6(11)\\\\
\log_6(x^2-25) = \log_6(11)\\\\
\log_6( \frac{x^2-25}{11}) = 0\\\\
6^0=\frac{x^2-25}{11}\\\\
\frac{x^2-25}{11} = 1\\\\
x^2-25 = 11\\\\
x^2 = 36\\\\
\sqrt{x^2} = \sqrt{36}\\\\ \boxed{x = 6}\\

S={6}
Perguntas interessantes