Atividades sobre funções compostas
Soluções para a tarefa
Explicação passo-a-passo:
1)
• f(g(x)) = f(x - 2)
f(g(x)) = 3.(x - 2) + 1
f(g(x)) = 3x - 6 + 1
f(g(x)) = 3x - 5
• g(f(x)) = g(3x + 1)
g(f(x)) = 3x + 1 - 2
g(f(x)) = 3x - 1
a)
f(g(5)) = 3.5 - 5
f(g(5)) = 15 - 5
f(g(5)) = 10
b)
g(f(-2)) = 3.(-2) - 1
g(f(-2)) = -6 - 1
g(f(-2)) = -7
c)
f(g(x)) = f(x - 2)
f(g(x)) = 3.(x - 2) + 1
f(g(x)) = 3x - 6 + 1
f(g(x)) = 3x - 5
d)
g(f(x)) = g(3x + 1)
g(f(x)) = 3x + 1 - 2
g(f(x)) = 3x - 1
2)
a)
• f(g(x)) = f(x + 1)
f(g(x)) = (x + 1)² - 2.(x + 1)
f(g(x)) = x² + 2x + 1 - 2x - 2
f(g(x)) = x² - 1
• f(g(1)) = 1² - 1
f(g(1)) = 1 - 1
f(g(1)) = 0
b)
• g(f(x)) = g(x² - 2x)
g(x)) = x² - 2x + 1
• g(f(2)) = 2² - 2.2 + 1
g(f(2)) = 4 - 4 + 1
g(f(2)) = 1
c)
f(g(f(x))) = f(x² - 2x + 1)
f(g(f(x))) = (x² - 2x + 1)² - 2.(x² - 2x + 1)
f(g(f(4))) = (4² - 2.4 + 1)² - 2.(4² - 2.4 + 1)
f(g(f(4))) = (16 - 8 + 1)² - 2.(16 - 8 + 1)
f(g(f(4))) = 9² - 2.9
f(g(f(4))) = 81 - 18
f(g(f(4))) = 63
d)
• f(f(x)) = f(x² - 2x)
f(f(x)) = (x² - 2x)² - 2.(x² - 2x)
• f(f(-1)) = [(-1)² - 2.(-1)]² - 2.[(-1)² - 2.(-1)]
f(f(-1)) = (1 + 2)² - 2.(1 + 2)
f(f(-1)) = 3² - 2.3
f(f(-1)) = 9 - 6
f(f(-1)) = 3