Matemática, perguntado por samirazedan, 8 meses atrás

Atividade 1 - Página 19
Passo 1 Desenhe um quadrado de lado medindo 1 unidade. Trace a
diagonal.
a) Calcule a área do quadrado e a medida da diagonal
A = ABBCh= a2 + b2


Indalecio: Você tem que postar a pergunta.
viniciusdemoraesmigl: To na procura dessa tambem jãokkkkk

Soluções para a tarefa

Respondido por lumich
7

A área do quadrado é igual a 1 unidade de área e a medida da diagonal é igual a \sqrt{2} unidades de comprimento.

Esta é uma questão sobre geometria, em especial sobre a figura geométrica "quadrado". O quadrado é uma figura de quatros lados iguais, que possui quatro ângulos retos (iguais a 90°). O enunciado nos pede para calcular sua área e sua diagonal sabendo que os lados medem 1 unidade.

Como o enunciado não nos disse qual é essa unidade, se são cm ou metros por exemplo, vamos utilizar apenas "unidade de área" e "unidade de comprimento".

O cálculo da área de um quadrado é dado pelo lado do quadrado elevado ao expoente 2, logo:

A = lado\times lado\\\\A = lado^2\\\\A = 1^2\\\\A = 1 u.a.

Já a diagonal de um quadrado pode ser calculada através do teorema de Pitágoras, aonde os catetos são os lados e a diagonal é a hipotenusa, então:

hip^2=cat^2+cat^2\\\\d^2=lado^2+lado^2\\\\d^2=1^2+1^2\\\\d^2=1+1\\\\d^2=2\\\\d=\sqrt{2} u.c

Perguntas interessantes