Atividade 1: Calcule o valor de x nos triângulos retângulos
Soluções para a tarefa
Resposta:
Pelas relações métricas do triângulo retângulo temos:
a) x² = 9.25
x² = 225
x = √225
x = 15
============
b) x² = 5.9
x = √5.9
x = 3.√5
=============
Explicação passo-a-passo:
Resposta:
Explicação passo-a-passo:
Regra Pé/Bota esquerda
A)
x² = 9*25
x² = 225
x = √225 = 15
B) Não tenho certeza se está certo
O valor do comprimento é 9, e temos o triângulo divido em duas partes, logo a outra parte vale 4, pois a outra é 5, logo 4+5=9.
Daremos o valor de y para o outro cateto do triângulo principal(o grandão).
Com isso já da para fazer novamente a regra da Bota esquerda.
y² = 4*9
y = √36
y = 6
Agora é só fazer teorema de Pitágoras, já que temos o valor da hipotenusa(9), um cateto(6, descobrimos agora) e o valor a ser descobrido(x).
9² = 6² + x²
81 = 36 + ²
81 - 36 = x²
45 = x²
x = √45 ou se preferir x ≅ 6,7 e simplificando x = 3*√5