Matemática, perguntado por gabrielavieira928, 1 ano atrás

Assinale a alternativa que indica o valor do limite
lim x-> -1 (3x²+2x-1/-x²+3x+4)²
Alternativas:
(A) - 16/25
(B) - 36/25
(C) - 1/16
(D - 1/25
(E) - 1/4

Soluções para a tarefa

Respondido por julianaguidi1owjxdx
1

ax²+bx+c=a*(x-x')*(x-x'')


3x²+2x -1=0 ==>x'=-1   e  x''= 1/3


3x²+2x -1=3*(x+1)*(x-1/3) =(x+1)*(3x-1)


-x²+3x+4 = 0 ==>x'=-1   e  x''= 4


-x²+3x+4 = -1*(x+1)*(x-4) =(x+1)*(4-x)



Lim (3x²+2x -1)/(-x²+3x+4)


x-->-1


Lim (x+1)*(3x-1)/(x+1)*(4-x)


x-->-1


Lim  (3x-1)/(4-x)   =(-3-1)/(4+1) =(-4/5)² = 16/25

RESPOSTA= ALTERNATIVA "A"


x-->-1

Perguntas interessantes