Matemática, perguntado por helenamathiasbonne, 10 meses atrás

As simplificações de \sqrt[3]{3^{2} }X\sqrt[5]{3} e \sqrt[4]{2^{10} } sao respectivamente:

Soluções para a tarefa

Respondido por Usuário anônimo
8

Explicação passo-a-passo:

M=\sqrt[3]{3^2}\cdot\sqrt[5]{3}

M=\sqrt[15]{3^{10}}\cdot\sqrt[15]{3^3}

M=\sqrt[15]{3^{10+3}}

M=\sqrt[15]{3^{13}}

N=\sqrt[4]{2^{10}}

N=\sqrt[4]{(2^2)^4\cdot2^2}

N=2^2\sqrt[4]{2^2}

N=4\sqrt[4\div2]{2^{2\div2}}

N=4\sqrt[2]{2}

Respondido por Gausss
1

Resposta:

Explicação passo-a-passo:

Simplificação

\sqrt[3\times 5]{3^{2\times 5} } \times\sqrt[5\times 3]{3^{3} } \\\\\sqrt[15]{3^{10} } \times\sqrt[15]{3^{3} } \\\\\sqrt[15]{3^{10}  \times 3^{3} } \\\\\sqrt[15]{3^{10+3} }\\\\\sqrt[15]{3^{13}}

=>>

\sqrt[4\div2]{2^{10\div2} } \\\\\sqrt[2]{2^{5} }\\\\4\sqrt[2]{2 }

Perguntas interessantes