Matemática, perguntado por maraclsra, 8 meses atrás

As regras de derivação e as técnicas passíveis de utilização para a determinação das derivadas de funções são aplicadas conforme a composição algébrica de cada lei de formação; conhecê-las facilita o processo de resolução de problemas.

Considerando a função f open parentheses x close parentheses equals fraction numerator 1 over denominator square root of x end fraction plus square root of x o valor numérico de f to the power of apostrophe open parentheses 1 close parentheses é igual a
Escolha uma:
a.

5 over 4
b.

3 over 4
c.

1 fourth
d.

7 over 4
e.

0

Soluções para a tarefa

Respondido por dryellidarosa
17

Resposta:

Resposta 0.

Nao tem um X para derivar, entao o valor fica nulo. A derivaçao é x2 = 2x. Dessa forma é 0.

Explicação passo a passo:

Respondido por silvapgs50
8

Calculando a derivada da função para o valor 1, temos o resultado 0, alternativa e.

Cálculo da derivada

Para derivar a função dada podemos utilizar a regra de derivação de funções polinomiais, pois a função raiz quadrada pode ser escrita como x elevado ao expoente 1/2. Dessa forma, temos que, a derivada da função é dada pela expressão:

f' (x) = - \dfrac{1}{2x^{3/2}} + \dfrac{1}{2x^{1/2}}

A questão pede para calcular a derivada da função no ponto específico x = 1. Portanto, para encontrar o resultado devemos substituir x = 1 na expressão encontrada para a derivada, dessa forma, podemos escrever:

f' (1) = - \dfrac{1}{2} + \dfrac{1}{2} = 0

Para mais informações sobre derivada, acesse: https://brainly.com.br/tarefa/48098014

#SPJ3

Anexos:
Perguntas interessantes