Matemática, perguntado por Iarahellen135, 1 ano atrás

as raízes da equação do 2° grau ×2-5 ×+4=0 são o 1° e o 2° termos de uma PG crescente. determine o 8°termo dessa pg

Soluções para a tarefa

Respondido por rodrigoreichert
2
Vamos determinar as raízes da equação

x² - 5x + 4 = 0

a = 1
b = -5
c = 4

Δ = b² - 4ac = (-5)² - 4 * 1 * 4 = 25 - 16 = 9

x' = (-b + √Δ) / 2a = (-(-5) + √9) / (2 * 1) = (5 + 3) / 2 = 8 / 2 = 4
x'' = (-b - √Δ) / 2a = (-(-5) - √9) / (2 * 1) = (5 - 3) / 2 = 2 / 2 = 1

Portanto, as raízes da função são 1 e 4. Esses são os 2 priemiros termos da PG, Vamos determinar a raiz dessa PG.

a1 = 1
a2 = 4

q = a2 / a1 = 4 / 1 = 4

Pela fórmula do termo geral da PG, podemos determinar o 8º termo dessa PG.

a_n=a_1*q^{n-1}\\\\a_8=1*4^{8-1}\\\\a_8=4^7\\\\a_8=16384

Portanto, o oitavo termo dessa PG é 16.384.
Perguntas interessantes