Matemática, perguntado por artcamir12, 10 meses atrás

As raízes da equação 2x²+bx+c=0 são −3 e 3 . Nesse caso, quanto vale ((b/2)²−c)?

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

A soma das raízes de uma equação do segundo grau é dada por:

\sf S=\dfrac{-b}{a}

\sf S=\dfrac{-b}{2}

\sf \dfrac{-b}{2}=-3+3

\sf \dfrac{-b}{2}=0

\sf -b=2\cdot0

\sf -b=0

\sf b=0

O produto das raízes de uma equação do segundo grau é dado por:

\sf P=\dfrac{c}{a}

\sf P=\dfrac{c}{2}

\sf \dfrac{c}{2}=(-3)\cdot3

\sf \dfrac{c}{2}=-9

\sf c=2\cdot(-9)

\sf c=-18

Logo:

\sf \left(\left(\dfrac{b}{2}\right)^2-c\right)=\left(\dfrac{0}{2}\right)^2-(-18)

\sf \left(\left(\dfrac{b}{2}\right)^2-c\right)=0+18

\sf \left(\left(\dfrac{b}{2}\right)^2-c\right)=18

Respondido por Makaveli1996
0

Vale 18.

S = (- b)/a

- 3 + 3 = (- b)/2

0 = - b/2

- b/2 = 0 . (- 1)

b/2 = 0

b = 0

P = c/a

- 3 . 3 = c/2

- 9 = c/2

- 9 . 2 = c

- 18 = c

c = - 18

(b/2)² - c

(0/2)² - (- 18)

0² + 18

0 + 18

18

atte. yrz

Perguntas interessantes