As placas de veiculos atuais sao formadas plr tres letras seguidas de quatro algarismos.considerando o alfabeto com 26 letras, quantas placas distintas podem ser fabricadas de modo que: os algarismos sejam distintos?
Soluções para a tarefa
Respondido por
3
3×10×4×26=3.120
{SEI QUE NÃO ESTÁ CERTA MAS ESPERI TER AJUDADO}
{SEI QUE NÃO ESTÁ CERTA MAS ESPERI TER AJUDADO}
ruan385:
puttz passou longe kk mas vlw
Respondido por
6
Essa é uma questão de analise combinatória.
Como a questão faz referencia a apenas algarismos distintos, significa que as letras podem ser repetidas. Isso nos da um total de letras obtidas pelo produto 26 X 26 X 26 = 17576 combinações de letras.
Para obter os números devemos evitar a repetição, portanto temos 0,1,2,3,4,5,6,7,8,9 , ou seja 10 opções para cada posição da parte númerica da placa. COmo não há repetição (distintos) 10 X 9X8X7 = 5040 respostas.
Para cada uma combinação de letras temos 5040 combinações de numeros e para termos o total de placa efetuamos a multiplicação dos dois resultados 17576 X 5040 = 88583040 placas
Como a questão faz referencia a apenas algarismos distintos, significa que as letras podem ser repetidas. Isso nos da um total de letras obtidas pelo produto 26 X 26 X 26 = 17576 combinações de letras.
Para obter os números devemos evitar a repetição, portanto temos 0,1,2,3,4,5,6,7,8,9 , ou seja 10 opções para cada posição da parte númerica da placa. COmo não há repetição (distintos) 10 X 9X8X7 = 5040 respostas.
Para cada uma combinação de letras temos 5040 combinações de numeros e para termos o total de placa efetuamos a multiplicação dos dois resultados 17576 X 5040 = 88583040 placas
Perguntas interessantes