Matemática, perguntado por K1ngsmen001, 9 meses atrás

As intersecções dos gráficos das funções f(x) = 4x + K, com k>0, g(x) = 2 e h(x) = - x+ 5 formam um triângulo com 10 unidades quadradas de área. O valor de k é:


bernardostres: 15

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

\sf f(x)=g(x)

\sf 4x+k=2

\sf 4x=2-k

\sf x=\dfrac{2-k}{4}

-> Ponto \sf A\left(\dfrac{2-k}{4},2\right)

\sf f(x)=h(x)

\sf 4x+k=-x+5

\sf 4x+x=5-k

\sf 5x=5-k

\sf x=\dfrac{5-k}{5}

Substituindo em h(x):

\sf h\left(\dfrac{5-k}{5}\right)=\dfrac{-5+k}{5}+5

\sf h\left(\dfrac{5-k}{5}\right)=\dfrac{-5+k+25}{5}

\sf h\left(\dfrac{5-k}{5}\right)=\dfrac{k+20}{5}

-> Ponto \sf B\left(\dfrac{5-k}{5},\dfrac{k+20}{5}\right)

\sf g(x)=h(x)

\sf -x+5=2

\sf x=5-2

\sf x=3

-> Ponto \sf C(3,2)

A área do triângulo ABC é dada por:

\sf A=\dfrac{|det~(D)|}{2}

sendo:

\sf D=\left(\begin{array}{ccc} \sf x_{A} &\sf y_{A} &\sf 1 \\ \sf x_{B} &\sf y_{B} &\sf 1 \\ \sf x_{C} &\sf y_{C} & \sf 1\end{array}\right)

\sf D=\left(\begin{array}{ccc} \sf \dfrac{2-k}{4} &\sf 2 &\sf 1 \\ \\ \sf \dfrac{5-k}{5} \sf &\sf \dfrac{k+20}{5} &\sf 1 \\ \\ \sf 3 &\sf 2 & \sf 1\end{array}\right)

\sf det~(D)=\left(\dfrac{2-k}{4}\right)\cdot\left(\dfrac{k+20}{5}\right)\cdot1+2\cdot1\cdot3+1\cdot\left(\dfrac{5-k}{5}\right)\cdot2-3\cdot\left(\dfrac{k+20}{5}\right)\cdot1-2\cdot1\cdot\left(\dfrac{2-k}{4}\right)-1\cdot\left(\dfrac{5-k}{5}\right)\cdot2

\sf det~(D)=\dfrac{40-18k-k^2}{20}+6+\dfrac{10-2k}{5}-\dfrac{3k+60}{5}-\dfrac{2-k}{2}-\dfrac{10-2k}{5}

\sf det~(D)=\dfrac{40-18k-k^2+120-12k-240-20+10k}{20}

\sf det~(D)=\dfrac{-k^2-20k-100}{20}

\sf \dfrac{|\frac{-k^2-20k-100}{20}|}{2}=10

\sf \left|\dfrac{-k^2-20k-100}{20}\right|=2\cdot10

\sf \left|\dfrac{-k^2-20k-100}{20}\right|=20

\sf \dfrac{-k^2-20k-100}{20}=20

\sf -k^2-20k-100=20\cdot20

\sf -k^2-20k-100=400

\sf k^2+20k+400+100=0

\sf k^2+20k+500=0

\sf \Delta=20^2-4\cdot1\cdot500

\sf \Delta=400-2000

\sf \Delta=-1600

Como \sf \Delta < 0, não há raízes reais

\sf \dfrac{-k^2-20k+60}{20}=-20

\sf -k^2-20k-100=(-20)\cdot20

\sf -k^2-20k-100=-400

\sf k^2+20k-400+100=0

\sf k^2+20k-300=0

\sf \Delta=20^2-4\cdot1\cdot(-300)

\sf \Delta=400+1200

\sf \Delta=1600

\sf k=\dfrac{-20\pm\sqrt{1600}}{2\cdot1}=\dfrac{-20\pm40}{2}

\sf k'=\dfrac{-20+40}{2}~\Rightarrow~k'=\dfrac{20}{2}~\Rightarrow~\green{k'=10}

\sf k"=\dfrac{-20-40}{2}~\Rightarrow~k"=\dfrac{-60}{2}~\Rightarrow~\underbrace{\red{k"=-30}}_{não~serve}

Logo, \sf k=10

Perguntas interessantes