Matemática, perguntado por juliadimare222, 9 meses atrás

Após, resolva as equações do 2° Grau, abaixo, sendo U=R , colocando o resultado no conjunto solução  →   S =  { x’ , x’'} 

Quando faltar b ou c , teremos:   b = 0  ou c = 0

      * Quando ∆  < 0 , não há raízes reais , então a solução será representada por: S = Ø  ou    S =  {    }
4) x² - x – 12 = 0           5)   x² - x – 30 = 0               6) x² - 9x = 0                    7) x² - 9 = 0       

8) 2x² - 8x  + 8  = 0                           9)   x²   + 4  = 0                           10)  3x² - 7x + 4 = 0​

Soluções para a tarefa

Respondido por Dianadi
0

Resposta:

4) S = { ( -3; 4)}       5) S = { ( -5; 6)}      6) S = { ( 0; 9)}         7) S = { ( -3; 3)}  

8)   S = { ( 2)}         9) S = {  }                 10)  S = { ( 2/3;  1)}

Explicação passo-a-passo:

Olá, boa tarde!

4) x² - x – 12 = 0    

determinar os coeficientes:    

 a = 1  b = -1  c = -12

determinar o valor do discriminante ( Δ ) :

Δ = b² - 4 . a . c

Δ = ( - 1 )² - 4 . 1 . ( - 12)

Δ = 1+48

Δ = 49 > 0, duas raízes reais e distintas.

determinar as raízes:

x = - b ±√Δ/ 2a

x = - ( - 1 ) ±√49/ 2.1

x = 1 ± 7/ 2

x' = 1 + 7/ 2                    x "= 1 - 7/ 2

x' = 8/ 2                         x = - 6 / 2

x' = 4                             x" = -3

S = { ( -3; 4)}

5)  x² - x – 30 = 0      

determinar os coeficientes:    

 a = 1  b = -1  c = -30

determinar o valor do discriminante ( Δ ) :

Δ = b² - 4 . a . c

Δ = ( - 1 )² - 4 . 1 . ( - 30)

Δ = 1+120

Δ = 121 > 0, duas raízes reais e distintas.

determinar as raízes:

x = - b ±√Δ/ 2a

x = - ( - 1 ) ±√121/ 2.1

x = 1 ± 11/ 2

x' = 1 + 11/ 2                    x "= 1  - 11/ 2

x' = 12/ 2                         x = - 10 / 2

x' = 6                             x" = - 5

S = { ( -5; 6)}

 

6) x² - 9x = 0  

determinar os coeficientes:    

 a = 1  b = -9  c = 0

x² - 9x = 0

x. ( x - 9) = 0

x = 0 ou x - 9 =0

              x = 0 + 9

              x = 9

S = { ( 0; 9)}  

 

7) x² - 9 = 0    

  determinar os coeficientes:    

 a = 1  b = 0  c = -9

x² - 9 = 0  

x² = 0 + 9

x² = 0

x =√0

x = ±3

S = { ( -3; 3)}  

8) 2x² - 8x  + 8  = 0

       determinar os coeficientes:    

 a = 2  b = -8  c = 8

determinar o valor do discriminante ( Δ ) :

Δ = b² - 4 . a . c

Δ = ( - 8 )² - 4 . 2 . 8

Δ = 64 - 64

Δ = 0 uma única raiz.

determinar as raízes:

x = - b ±√Δ/ 2a

x = - ( - 8 ) ±√0/ 2.2

x = 8 ± 0/ 4

x = 8 / 4                  

x = 2                        

S = { ( 2)}

9)  x²   + 4  = 0

 determinar os coeficientes:    

 a = 1  b = 0  c = 4

x² + 4 = 0  

x² = 0 - 4

x² = - 4

x =√ -4

não existe x ∈ R

S = {  }  

10)  3x² - 7x + 4 = 0​

determinar os coeficientes:    

 a = 3  b = -7  c = 4

determinar o valor do discriminante ( Δ ) :

Δ = b² - 4 . a . c

Δ = ( - 7 )² - 4 . 3 . 4

Δ = 49 - 48

Δ = 1 > 0, duas raízes reais e distintas.

determinar as raízes:

x = - b ±√Δ/ 2a

x = - ( - 7 ) ±√1/ 2.3

x = 7 ± 1/ 6

x' = 7 + 1/ 6                    x "= 7 - 1 / 6

x' = 8/ 6                         x = 6 / 6

x' =  2/ 3                          x" = 1

S = { ( 2/3; 1)}

Espero ter ajudado!

Respondido por ianmiguelmalaquiasde
0

Resposta:

4) S = { ( -3; 4)}      

5) S = { ( -5; 6)}

6) S = { ( 0; 9)}        

7) S = { ( -3; 3)}  

8)   S = { ( 2)}        

9) S = {  }                

10)  S = { ( 2/3;  1)}

Perguntas interessantes