Matemática, perguntado por precisodeajuda0202, 1 ano atrás

Aplique as propriedades para resolver as potências:

Anexos:

Soluções para a tarefa

Respondido por DalaryEstrillyt
24
  1. RESOLUÇÃO
  2. RESPOSTA
  3. PROPRIEDADES DE POTÊNCIA

 \\

RESOLUÇÃO:

 \\

A)

 {2}^{9}  \times  {2}^{ - 6} = {2}^{9 + ( - 6)}  = {2}^{9 - 6}  ={2}^{3} \: \: \: =\: \: \: 2 \times 2 \times 2\: \: \: =\: \: \: 8\\ \\ {2}^{9}  \times  {2}^{ - 6}  ={2}^{9+ (-6)}  = {2}^{3} = 8

 \\ \\ \\

B)

 {6}^{ - 9}  \times  {6}^{1}  \times  {6}^{7}  = {6}^{( - 9) + 1 + 7}  =  {6}^{ - 9+ 1 + 7}  =   {6}^{- 1}  =  \frac{ {6}^{1} }{ {6}^{2} }  =  \frac{6 }{6 \times 6}  =  \frac{1}{6} \\ \\  {6}^{ - 9}  \times  {6}^{1}  \times  {6}^{7} = {6}^{( - 9) + 1 + 7} = {6}^{- 1}  = \frac{1}{6}

 \\\\\\

C)

 {5}^{3}  \times  {5}^{ - 6}  =  {5}^{3 + ( - 6)}  = {5}^{3 - 6}  =  {5}^{ - 3}   =  \frac{ {5}^{3} }{ {5}^{6} }  =  \frac{5 \times 5 \times 5}{5 \times 5 \times 5 \times 5 \times 5 \times 5} =  \frac{1}{5 \times 5 \times 5 } =  \frac{1}{ {5}^{3} }  =  \frac{1}{125} \\ \\ {5}^{3}  \times  {5}^{ - 6}  =  {5}^{3 + ( - 6)}  =  {5}^{ - 3} =  \frac{1}{ {5}^{3} }  =  \frac{1}{125}

 \\\\\\

D)

 {36}^{ \frac{1}{2} }  =   \sqrt[2]{{36}^{1 }}   = \sqrt{36}  = 6

 \\\\\\

E)

 {2}^{ - 5}  \times  {2}^{5}  \times  {2}^{-1}  = {2}^{( - 5) + 5 + (-1)}  =  {2}^{ - 5+ 5 - 1}  =  {2}^{- 1}  =  \frac{ {2}^{1} }{ {2}^{2} }  =  \frac{2}{2\times 2}  =  \frac{1}{2} = 0,5 \\ \\  {2}^{ - 5}  \times  {2}^{5}  \times  {2}^{-1}  = {2}^{( - 5) + 5 + (-1)}  =  {2}^{- 1}=\frac{1}{2}

 \\\\\\

F)

 {7}^{ 0}  =  {7}^{1 - 1} =  \frac{ {7}^{1} }{ {7}^{1} }  = 1

 \\\\\\

G)

 {4}^{ -2}  =  \frac{ {4}^{1} }{ {4}^{3} }  = \frac{ 4 }{ 4 \times 4 \times 4} =  \frac{ 1 }{ 4 \times 4} = \frac{ 1 }{ {4}^{2} } = \frac{ 1 }{ 4 \times 4  } = \frac{ 1 }{ 16  }  \\ \\ {4}^{ -2}  =\frac{ 1 }{ {4}^{2} } = \frac{ 1 }{ 16  }

 \\\\\\

H)

 {2}^{ 2} \times   {2}^{ - 6} =  {2}^{ 2 + (-6)} = {2}^{ 2 -6}  ={2}^{-4}  = \frac{ 1 }{ {2}^{4} } = \frac{ 1 }{ 2 \times 2 \times 2 \times 2 } = \frac{ 1 }{ 16 }

 \\\\\\

I)

   \frac{ {3}^{5} }{ {3}^{7} }  =       \frac{ 3 \times 3 \times 3 \times 3 \times 3 }{  3 \times 3 \times 3\times 3 \times 3 \times 3 \times 3} =  \frac{ 1}{  3 \times 3 }  =    \frac{ 1 }{ {3}^{2} } =   \frac{ 1}{ 9} \\ \\   \frac{ {3}^{5} }{ {3}^{7} }  =  {3}^{5-7} ={3}^{-2} =  \frac{ 1 }{ {3}^{2} } =   \frac{ 1}{ 9}

 \\\\\\

J)

  { (\frac{ 2}{ 5 })}^{2}  =    \frac{ 2}{ 5 }\times \frac{ 2}{ 5 } = \frac{ 2 \times 2}{ 5 \times 5 } = \frac{ {2}^{2}}{ {5}^{2} } = \frac{ 4}{ 25} \\ \\ { (\frac{ 2}{ 5 })}^{2} = \frac{ {2}^{2}}{ {5}^{2} } = \frac{ 4}{ 25}

 \\\\\\

K)

 {({4}^{ 2})}^{5}  =  {(4 \times 4)}^{5}  =  (4 \times 4) \times (4 \times 4) \times (4 \times 4)  \times (4 \times 4) \times (4 \times 4) = {4}^{10} \\ \\ {({4}^{ 2})}^{5}  =  {4}^{ 2\times 5} = {4}^{10}

 \\\\\\

L)

  { (  \frac{ 2}{ 3 }  ) }^{-3}  = \frac{  \frac{ 2}{ 3 } }{  {(\frac{ 2}{ 3 })}^{4} } = \frac{  \frac{ 2}{ 3 }   }{  \frac{ 2}{ 3 } \times \frac{ 2}{ 3 } \times \frac{ 2}{ 3 } \times \frac{ 2}{ 3 } } = \frac{1 }{  \frac{ 2}{ 3 } \times \frac{ 2}{ 3 } \times \frac{ 2}{ 3 } } = \frac{1}{ {(\frac{ 2}{ 3 })}^{3} } = \frac{1}{  \frac{ {2}^{3}}{ {3 }^{3} } } = \frac{1}{  \frac{ 8}{ 27 } }\: \: \:=\: \: \: \frac{1}{1 } \times   \frac{ 27}{ 8 }\: \: \: =\: \: \:\frac{ 27}{ 8 } \\ \\ { (  \frac{ 2}{ 3 }  ) }^{-3}  = \frac{ {2}^{-3}}{ {3 }^{-3} } = \frac{ \frac{1}{{2}^{3}}  }{  \frac{1}{{3}^{3}} } \: \: \: =  \: \: \: \frac{1}{ {2}^{3}} \times \frac{ {3}^{3} }{1} \: \: \: = \: \: \: \frac{1}{8} \times \frac{27}{1} \: \: \:=  \: \: \:\frac{27}{8} \\ \\  { (\frac{ 2}{ 3 })}^{-3}  = { (\frac{ 3}{ 2})}^{3}  =  \frac{ {3}^{3}}{ {2}^{3} } = \frac{ 27}{ 8}

 \\\\\\

RESPOSTA:

A) 8

B) \frac{1}{6}

C) \frac{1}{125}

D)6

E) \frac{1}{2}

F)1

G)\frac{1}{16}

H) \frac{1}{16}

I) \frac{1}{9}

J) \frac{4}{25}

K)  {4}^{10}

L)\frac{27}{8}

 \\\\\\

PROPRIEDADES DE POTÊNCIA:

Divisão:

\frac{{A}^{b}}{{a}^{c}} =  {A}^{b-c}

{A}^{-b} = \frac{1}{{A}^{b}}

 \\

Multiplicação:

 {A}^{b} \times  {A}^{c}  = {A}^{b+c}

{({A}^{b})}^{c}={A}^{b \times c}

 {(\frac{A}{D})}^{b} =\frac{{A}^{b}}{{D}^{b}}

 \\

Fração no Expoente:

 {A}^{ \frac{b}{c} }  =   \sqrt[c]{{A}^{b}}


DalaryEstrillyt: Oi :)
Perguntas interessantes