Aplique as propriedades dos radicais e transforme a expressão abaixo em um único radical:
Anexos:
![](https://pt-static.z-dn.net/files/d71/30a70f38cb7841320899e0040413ce68.jpg)
Soluções para a tarefa
Respondido por
3
Boa Noite e Bons Estudos !!
Respondido por
10
Propriedades utilizadas:
![\begin{array}{rclc} \sqrt[m]{\sqrt[n]{a}}&=&\sqrt[m \cdot n]{a}&\;\;\;\text{(i)}\\ \\ \sqrt[n]{a}\cdot \sqrt[n]{b}&=&\sqrt[n]{a \cdot b}&\;\;\;\text{(ii)}\\ \\ \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}&=&\sqrt[n]{\dfrac{a}{b}}&\;\;\;\text{(iii)} \end{array} \begin{array}{rclc} \sqrt[m]{\sqrt[n]{a}}&=&\sqrt[m \cdot n]{a}&\;\;\;\text{(i)}\\ \\ \sqrt[n]{a}\cdot \sqrt[n]{b}&=&\sqrt[n]{a \cdot b}&\;\;\;\text{(ii)}\\ \\ \dfrac{\sqrt[n]{a}}{\sqrt[n]{b}}&=&\sqrt[n]{\dfrac{a}{b}}&\;\;\;\text{(iii)} \end{array}](https://tex.z-dn.net/?f=%5Cbegin%7Barray%7D%7Brclc%7D+%5Csqrt%5Bm%5D%7B%5Csqrt%5Bn%5D%7Ba%7D%7D%26amp%3B%3D%26amp%3B%5Csqrt%5Bm+%5Ccdot+n%5D%7Ba%7D%26amp%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28i%29%7D%5C%5C+%5C%5C+%5Csqrt%5Bn%5D%7Ba%7D%5Ccdot+%5Csqrt%5Bn%5D%7Bb%7D%26amp%3B%3D%26amp%3B%5Csqrt%5Bn%5D%7Ba+%5Ccdot+b%7D%26amp%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28ii%29%7D%5C%5C+%5C%5C+%5Cdfrac%7B%5Csqrt%5Bn%5D%7Ba%7D%7D%7B%5Csqrt%5Bn%5D%7Bb%7D%7D%26amp%3B%3D%26amp%3B%5Csqrt%5Bn%5D%7B%5Cdfrac%7Ba%7D%7Bb%7D%7D%26amp%3B%5C%3B%5C%3B%5C%3B%5Ctext%7B%28iii%29%7D+%5Cend%7Barray%7D)
![\dfrac{\sqrt[4]{\sqrt{16}}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15}\cdot \sqrt[8]{\frac{4}{3}}}\\ \\ =\dfrac{\sqrt[4\cdot 2]{16}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15\cdot \frac{4}{3}}}\\ \\ =\dfrac{\sqrt[8]{16}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{20}}\\ \\ =\dfrac{\sqrt[8]{16 \cdot \frac{5}{2}}}{\sqrt[8]{20}}\\ \\ =\dfrac{\sqrt[8]{40}}{\sqrt[8]{20}}\\ \\ =\sqrt[8]{\dfrac{40}{20}} \\ \\=\sqrt[8]{2}\\ \\ \\ \boxed{\dfrac{\sqrt[4]{\sqrt{16}}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15}\cdot \sqrt[8]{\frac{4}{3}}}=\sqrt[8]{2}} \dfrac{\sqrt[4]{\sqrt{16}}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15}\cdot \sqrt[8]{\frac{4}{3}}}\\ \\ =\dfrac{\sqrt[4\cdot 2]{16}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15\cdot \frac{4}{3}}}\\ \\ =\dfrac{\sqrt[8]{16}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{20}}\\ \\ =\dfrac{\sqrt[8]{16 \cdot \frac{5}{2}}}{\sqrt[8]{20}}\\ \\ =\dfrac{\sqrt[8]{40}}{\sqrt[8]{20}}\\ \\ =\sqrt[8]{\dfrac{40}{20}} \\ \\=\sqrt[8]{2}\\ \\ \\ \boxed{\dfrac{\sqrt[4]{\sqrt{16}}\cdot \sqrt[8]{\frac{5}{2}}}{\sqrt[8]{15}\cdot \sqrt[8]{\frac{4}{3}}}=\sqrt[8]{2}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Csqrt%5B4%5D%7B%5Csqrt%7B16%7D%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B5%7D%7B2%7D%7D%7D%7B%5Csqrt%5B8%5D%7B15%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B4%7D%7B3%7D%7D%7D%5C%5C+%5C%5C+%3D%5Cdfrac%7B%5Csqrt%5B4%5Ccdot+2%5D%7B16%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B5%7D%7B2%7D%7D%7D%7B%5Csqrt%5B8%5D%7B15%5Ccdot+%5Cfrac%7B4%7D%7B3%7D%7D%7D%5C%5C+%5C%5C+%3D%5Cdfrac%7B%5Csqrt%5B8%5D%7B16%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B5%7D%7B2%7D%7D%7D%7B%5Csqrt%5B8%5D%7B20%7D%7D%5C%5C+%5C%5C+%3D%5Cdfrac%7B%5Csqrt%5B8%5D%7B16+%5Ccdot+%5Cfrac%7B5%7D%7B2%7D%7D%7D%7B%5Csqrt%5B8%5D%7B20%7D%7D%5C%5C+%5C%5C+%3D%5Cdfrac%7B%5Csqrt%5B8%5D%7B40%7D%7D%7B%5Csqrt%5B8%5D%7B20%7D%7D%5C%5C+%5C%5C+%3D%5Csqrt%5B8%5D%7B%5Cdfrac%7B40%7D%7B20%7D%7D+%5C%5C+%5C%5C%3D%5Csqrt%5B8%5D%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cboxed%7B%5Cdfrac%7B%5Csqrt%5B4%5D%7B%5Csqrt%7B16%7D%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B5%7D%7B2%7D%7D%7D%7B%5Csqrt%5B8%5D%7B15%7D%5Ccdot+%5Csqrt%5B8%5D%7B%5Cfrac%7B4%7D%7B3%7D%7D%7D%3D%5Csqrt%5B8%5D%7B2%7D%7D)
Perguntas interessantes
Geografia,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás