Matemática, perguntado por gehbellamy2010, 1 ano atrás

Aplicando as propriedades das potências a expressão 15^4•35^3•21^3•{1/105},pode ser escrita como: a)3•5^2•7 b)3^2•5^2•7 c)3^4•5^3•7^3 d)3^7•5^7•7^6 e)3^12•5^12•7^11

Soluções para a tarefa

Respondido por silvageeh
10

Temos que:

15^4.35^3.21^3.\frac{1}{105}.

Perceba que podemos dizer que:

15 = 3.5

35 = 5.7

21 = 7.3

105 = 3.5.7

Assim,

\frac{(3.5)^4.(7.5)^3.(3.7)^3}{3.5.7}.

Existe uma propriedade de potência que diz:

(ab)ˣ = aˣ.bˣ.

Logo,

\frac{3^4.5.^4.7^3.5^3.3^3.7^3}{3.5.7}

Como temos uma multiplicação, então podemos reescrever a expressão acima da seguinte forma:

\frac{3^4.3^3.5^4.5^3.7^3.7^3}{3.5.7}

Com os números de mesma base, na multiplicação, podemos repeti-las e somar os expoentes:

\frac{3^7.5^7.7^6}{3.5.7}

ou seja,

\frac{3^7}{3}.\frac{5^7}{5}.\frac{7^6}{7}

Na divisão de mesma base repetimos a base e subtraímos o expoente.

Portanto, temos que a simplificação da expressão é 3⁶.5⁶.7⁵.

Respondido por kauansk8
4

POR FAVOR ME AJUDEM TENHO PROVA AMANHÃ E ESTOU ESTUDANDO PARA A PROVA ALGUÉM. SABE A RESPOSTA??


Perguntas interessantes