Ao atender um paciente, um médico verifica que, entre outros problemas, ele está com temperatura de 37,50C e deixa-o em observação no posto de saúde. Depois de uma hora, examina-o novamente, medindo a temperatura e observa que ela aumentou 2ºC.
O valor dessa variação de temperatura, na escala Fahrenheit, e a temperatura final, na escala Kelvin, são respectivamente iguais a:
a) 3,6º F e 233,5 K
b) 35,6º F e 312,5 K
c) 35,6º F e 233,5 K
d) 3,6º F e 312,5 K
Soluções para a tarefa
Respondido por
191
A temperatura inicial do paciente era de 37,5º C, a pois 1 hora a sua temperatura sofreu um aumento de 2ºC:
![\mathsf{T_{final}\left(^{\circ }C\right)=T_{inicial}\left(^{\circ \:}C\right)+2^{\circ }}\\\mathsf{T_{final}\left(^{\circ }C\right)=37,5^{\circ }+2^{\circ }}\\\mathsf{T_{final}\left(^{\circ }C\right)=39,5^{\circ }} \mathsf{T_{final}\left(^{\circ }C\right)=T_{inicial}\left(^{\circ \:}C\right)+2^{\circ }}\\\mathsf{T_{final}\left(^{\circ }C\right)=37,5^{\circ }+2^{\circ }}\\\mathsf{T_{final}\left(^{\circ }C\right)=39,5^{\circ }}](https://tex.z-dn.net/?f=%5Cmathsf%7BT_%7Bfinal%7D%5Cleft%28%5E%7B%5Ccirc+%7DC%5Cright%29%3DT_%7Binicial%7D%5Cleft%28%5E%7B%5Ccirc+%5C%3A%7DC%5Cright%29%2B2%5E%7B%5Ccirc+%7D%7D%5C%5C%5Cmathsf%7BT_%7Bfinal%7D%5Cleft%28%5E%7B%5Ccirc+%7DC%5Cright%29%3D37%2C5%5E%7B%5Ccirc+%7D%2B2%5E%7B%5Ccirc+%7D%7D%5C%5C%5Cmathsf%7BT_%7Bfinal%7D%5Cleft%28%5E%7B%5Ccirc+%7DC%5Cright%29%3D39%2C5%5E%7B%5Ccirc+%7D%7D)
= = = = =
A questão solicita a variação da temperatura na escala Fahrenheit, onde inicialmente devemos transformar as temperaturas (final e inicial) para a escava em questão:
![\mathsf{\dfrac{C}{5^{\circ }}=\dfrac{F-32^{\circ }}{9^{\circ }}} \mathsf{\dfrac{C}{5^{\circ }}=\dfrac{F-32^{\circ }}{9^{\circ }}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7BC%7D%7B5%5E%7B%5Ccirc+%7D%7D%3D%5Cdfrac%7BF-32%5E%7B%5Ccirc+%7D%7D%7B9%5E%7B%5Ccirc+%7D%7D%7D)
◾ Temperatura inicial (°C ⇒ °F):
![\mathsf{\dfrac{37,5^{\circ }}{5}=\dfrac{F-32^{\circ }}{9}}\\\\\\\mathsf{7,5^{\circ }=\dfrac{F-32^{\circ }}{9}}\\\\\mathsf{7,5^{\circ }\cdot 9=F-32^{\circ }}\\\\\mathsf{67,5^{\circ }=F-32^{\circ }}\\\\\mathsf{F=67,5^{\circ }+32^{\circ }}\\\\\mathsf{F=99,5^{\circ }} \mathsf{\dfrac{37,5^{\circ }}{5}=\dfrac{F-32^{\circ }}{9}}\\\\\\\mathsf{7,5^{\circ }=\dfrac{F-32^{\circ }}{9}}\\\\\mathsf{7,5^{\circ }\cdot 9=F-32^{\circ }}\\\\\mathsf{67,5^{\circ }=F-32^{\circ }}\\\\\mathsf{F=67,5^{\circ }+32^{\circ }}\\\\\mathsf{F=99,5^{\circ }}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B37%2C5%5E%7B%5Ccirc+%7D%7D%7B5%7D%3D%5Cdfrac%7BF-32%5E%7B%5Ccirc+%7D%7D%7B9%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B7%2C5%5E%7B%5Ccirc+%7D%3D%5Cdfrac%7BF-32%5E%7B%5Ccirc+%7D%7D%7B9%7D%7D%5C%5C%5C%5C%5Cmathsf%7B7%2C5%5E%7B%5Ccirc+%7D%5Ccdot+9%3DF-32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7B67%2C5%5E%7B%5Ccirc+%7D%3DF-32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7BF%3D67%2C5%5E%7B%5Ccirc+%7D%2B32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7BF%3D99%2C5%5E%7B%5Ccirc+%7D%7D)
◾ Temperatura final (°C ⇒ °F):
![\mathsf{\dfrac{39,5^{\circ }}{5}=\dfrac{F-32^{\circ }}{9}}\\\\\\\mathsf{7,9^{\circ }=\dfrac{F-32^{\circ }}{9}}\\\\\mathsf{7,9^{\circ }\cdot 9=F-32^{\circ }}\\\\\mathsf{71,1^{\circ }=F-32^{\circ }}\\\\\mathsf{F=71,1^{\circ }+32^{\circ }}\\\\\mathsf{F=103,1^{\circ }} \mathsf{\dfrac{39,5^{\circ }}{5}=\dfrac{F-32^{\circ }}{9}}\\\\\\\mathsf{7,9^{\circ }=\dfrac{F-32^{\circ }}{9}}\\\\\mathsf{7,9^{\circ }\cdot 9=F-32^{\circ }}\\\\\mathsf{71,1^{\circ }=F-32^{\circ }}\\\\\mathsf{F=71,1^{\circ }+32^{\circ }}\\\\\mathsf{F=103,1^{\circ }}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7B39%2C5%5E%7B%5Ccirc+%7D%7D%7B5%7D%3D%5Cdfrac%7BF-32%5E%7B%5Ccirc+%7D%7D%7B9%7D%7D%5C%5C%5C%5C%5C%5C%5Cmathsf%7B7%2C9%5E%7B%5Ccirc+%7D%3D%5Cdfrac%7BF-32%5E%7B%5Ccirc+%7D%7D%7B9%7D%7D%5C%5C%5C%5C%5Cmathsf%7B7%2C9%5E%7B%5Ccirc+%7D%5Ccdot+9%3DF-32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7B71%2C1%5E%7B%5Ccirc+%7D%3DF-32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7BF%3D71%2C1%5E%7B%5Ccirc+%7D%2B32%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cmathsf%7BF%3D103%2C1%5E%7B%5Ccirc+%7D%7D)
Logo, a variação sera:
![\mathsf{\Delta T\left(^{\circ }F\right)=T_{final}-T_{inical}}\\\\\mathsf{\Delta T\left(^{\circ }F\right)=103,1^{\circ }-99,5^{\circ }}\\\\\boxed{\mathsf{\Delta T\left(^{\circ }F\right)=3,6^{\circ }}} \mathsf{\Delta T\left(^{\circ }F\right)=T_{final}-T_{inical}}\\\\\mathsf{\Delta T\left(^{\circ }F\right)=103,1^{\circ }-99,5^{\circ }}\\\\\boxed{\mathsf{\Delta T\left(^{\circ }F\right)=3,6^{\circ }}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5CDelta+T%5Cleft%28%5E%7B%5Ccirc+%7DF%5Cright%29%3DT_%7Bfinal%7D-T_%7Binical%7D%7D%5C%5C%5C%5C%5Cmathsf%7B%5CDelta+T%5Cleft%28%5E%7B%5Ccirc+%7DF%5Cright%29%3D103%2C1%5E%7B%5Ccirc+%7D-99%2C5%5E%7B%5Ccirc+%7D%7D%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7B%5CDelta+T%5Cleft%28%5E%7B%5Ccirc+%7DF%5Cright%29%3D3%2C6%5E%7B%5Ccirc+%7D%7D%7D)
= = = = =
A questão também solicita a temperatura final do paciente na escala Kelvin, utilizando a formula, que nada mas é do que acrescentar 273°:
![\mathsf{K=C+273}\\\\\mathsf{K=39,5+273}\\\\\boxed{\mathsf{K=312,5}} \mathsf{K=C+273}\\\\\mathsf{K=39,5+273}\\\\\boxed{\mathsf{K=312,5}}](https://tex.z-dn.net/?f=%5Cmathsf%7BK%3DC%2B273%7D%5C%5C%5C%5C%5Cmathsf%7BK%3D39%2C5%2B273%7D%5C%5C%5C%5C%5Cboxed%7B%5Cmathsf%7BK%3D312%2C5%7D%7D)
= = = = =
![\boxed{\boxed{\mathsf{Resposta:\:Letra\:D\:-\:3,6^{\circ }F\:e\:312,5\:K}}}\: \: \checkmark \boxed{\boxed{\mathsf{Resposta:\:Letra\:D\:-\:3,6^{\circ }F\:e\:312,5\:K}}}\: \: \checkmark](https://tex.z-dn.net/?f=%5Cboxed%7B%5Cboxed%7B%5Cmathsf%7BResposta%3A%5C%3ALetra%5C%3AD%5C%3A-%5C%3A3%2C6%5E%7B%5Ccirc+%7DF%5C%3Ae%5C%3A312%2C5%5C%3AK%7D%7D%7D%5C%3A+%5C%3A+%5Ccheckmark)
= = = = =
A questão solicita a variação da temperatura na escala Fahrenheit, onde inicialmente devemos transformar as temperaturas (final e inicial) para a escava em questão:
◾ Temperatura inicial (°C ⇒ °F):
◾ Temperatura final (°C ⇒ °F):
Logo, a variação sera:
= = = = =
A questão também solicita a temperatura final do paciente na escala Kelvin, utilizando a formula, que nada mas é do que acrescentar 273°:
= = = = =
Respondido por
35
corta o 5
tu vai ficar com:
k-273=39,5
k=399,5+273
k=312,5
daí tu já elimina a A), C) e E)
ΔF=1,8.ΔC
ΔF=1,8 . 2
ΔF= 3,6
RESPOSTA D)
Perguntas interessantes
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Matemática,
11 meses atrás
Química,
1 ano atrás
Química,
1 ano atrás