Matemática, perguntado por cefovi, 11 meses atrás

Análise combinatória valendo 25 Pontos (Só responda se souber):


No exame de uma disciplina o teste é constituído por 10 questões das quais o estudante tem de responder a 7.

a) Se o estudante pode escolher livremente as 7 questões, quantas escolhas diferentes ele pode fazer?

b)E no caso do estudante ter de escolher PELO MENOS 3 das 5 primeiras questões?


A resposta da letra b) EU tenho quase certeza de que é 110, mas não tenho muita certeza da letra a), eu cheguei a 120 como resultado. Quem puder me ajudar ficarei muito grato :)

Soluções para a tarefa

Respondido por juanbomfim22
1

a) Ele pode fazer C10,7 escolhas diferentes (combinação de 10 questões, tomadas 7 a 7 - ordem de escolha não importa)

C10,7 = 120

b) Se ele escolher pelo menos 3, isso significa que ele escolherá:

- Ou 3 questões das 5 primeiras e 4 questões das 5 últimas

- Ou 4 questões da 5 primeiras e 3 questões das 5 últimas

- Ou 5 questões das 5 primeiras e 2 questões das 5 últimas

Calculando a combinação de 5,3 e 5,4 e 5,5, temos:

C5,3 e C5,4= 10 × 5 = 50

C5,4 e C5,3 = 5 × 10 = 50

C5,5 e C5,2 = 1 × 10 = 10

Já que pode ocorrer OU o primeiro caso OU o segundo OU o terceiro, somaremos as combinações.

50 + 50 + 10 = 110


cefovi: Foi a mesma resposta que eu cheguei. Obrigado, Juan :)
cefovi: Vou colocar uma outra de trigonometria :P
juanbomfim22: Boa!! Vamos lá pra outra heheh
cefovi: Postei lá, pode tentar me ajudar? :)
Usuário anônimo: Ótima resposta!!
Usuário anônimo: Fiz assim também
Usuário anônimo: Vlw por mais uma, Juan kk
Usuário anônimo: Acho que já nos encontramos antes no Brainly
Respondido por alexandreguhere
0

Resposta:

pode mim ajuda a responde 3 questão??

Perguntas interessantes