Análise Combinatória
Quantos números de três algarismos apresentam, pelo menos, dois algarismo repetidos?
A resposta é 252 mas não sei como resolver...
Soluções para a tarefa
As 9 possibilidades para o primeiro dígito são os algarismos de 1 a 9, daí usamos um deles, então o segundo era pra ter 8 possibilidades, mas agora podemos usar o 0, indo pra 9 possibilidades para o segundo dígito. Usamos dois, então, de 10 algarismos, só podemos usar 8, restando essas 8 possibilidades para o último dígito.
Agora que temos a quantidade de números de algarismos distintos podemos responder a questão. Chamando de Q a quantidade procurada temos:
Resposta:
252 <= números de 3 algarismos com PELO MENOS 2 algarismos repetidos
Explicação passo-a-passo:
.
=> Pretendemos formar números com PELO MENOS 2 algarismos repetidos
...isto implica que os números podem ter 2 OU 3 algarismos repetidos
...ou ainda que SÓ NÃO INTERESSAM os números que tenham TODOS os algarismos distintos.
Assim vamos calcular TODOS os números possíveis de formar com 3 algarismos ...e depois subtrair TODOS os números que tenham algarismos distintos
RESOLVENDO:
=> Todos os números de 3 algarismos possíveis de formar:
→ Para o 1º algarismo temos 9 possibilidades (como vimos no exercício anterior o "ZERO" não pode ocupar o 1º digito)
→ Para o 2º digito temos 10 possibilidades
→ Para o 3º digito temos também 10 possibilidades
Assim o total de números será dado por:
N = 9.10.10
N = 900
=> Todos os números DISTINTOS (sem repetições)
→ Para o 1º digito temo 9 possibilidades (todos menos o "0")
-→ Para o 2º digito temos 9 possibilidades (todos menos o algarismo utilizado anteriormente)
→ Para o 3º digito temos 8 possibilidades (todos menos os 2 utilizados anteriormente)
Assim o total de números distintos será dado por:
N = 9.9.8
N = 648
Agora só falta calcular os que tem PELO MENOS 2 algarismos repetidos, donde resulta:
N = 900 - 640
N = 252 <= números de 3 algarismos com PELO MENOS 2 algarismos repetidos
Espero ter ajudado novamente