analisar a monotonicidade da função f(x) = | x - 1 |/x²
Soluções para a tarefa
Respondido por
2
O domínio da função é o conjunto ![\mathbb{R}-\{0\}. \mathbb{R}-\{0\}.](https://tex.z-dn.net/?f=%5Cmathbb%7BR%7D-%5C%7B0%5C%7D.)
![f(x)=\dfrac{|x-1|}{x^{2}}\\ \\ \\ f(x)=\left\{ \begin{array}{cl} \dfrac{x-1}{x^{2}},&\text{se }x\geq 1\\ \\ \dfrac{1-x}{x^{2}},&\text{se }x<0\,\text{ ou }\,0<x<1 \end{array} \right. f(x)=\dfrac{|x-1|}{x^{2}}\\ \\ \\ f(x)=\left\{ \begin{array}{cl} \dfrac{x-1}{x^{2}},&\text{se }x\geq 1\\ \\ \dfrac{1-x}{x^{2}},&\text{se }x<0\,\text{ ou }\,0<x<1 \end{array} \right.](https://tex.z-dn.net/?f=f%28x%29%3D%5Cdfrac%7B%7Cx-1%7C%7D%7Bx%5E%7B2%7D%7D%5C%5C+%5C%5C+%5C%5C+f%28x%29%3D%5Cleft%5C%7B+%5Cbegin%7Barray%7D%7Bcl%7D+%5Cdfrac%7Bx-1%7D%7Bx%5E%7B2%7D%7D%2C%26amp%3B%5Ctext%7Bse+%7Dx%5Cgeq+1%5C%5C+%5C%5C+%5Cdfrac%7B1-x%7D%7Bx%5E%7B2%7D%7D%2C%26amp%3B%5Ctext%7Bse+%7Dx%26lt%3B0%5C%2C%5Ctext%7B+ou+%7D%5C%2C0%26lt%3Bx%26lt%3B1+%5Cend%7Barray%7D+%5Cright.)
Observe que
não é derivável em
pois
![\underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{f(x)-f(1)}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{\frac{1-x}{x^{2}}-0}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{-(x-1)}{x^{2}}\cdot\dfrac{1}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,-\dfrac{1}{x^{2}}=-1 \underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{f(x)-f(1)}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{\frac{1-x}{x^{2}}-0}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,\dfrac{-(x-1)}{x^{2}}\cdot\dfrac{1}{x-1}\\ \\ \\ =\underset{x\to 1^{-}}{\mathrm{\ell im}}\,-\dfrac{1}{x^{2}}=-1](https://tex.z-dn.net/?f=%5Cunderset%7Bx%5Cto+1%5E%7B-%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7Bf%28x%29-f%281%29%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B-%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B%5Cfrac%7B1-x%7D%7Bx%5E%7B2%7D%7D-0%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B-%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B-%28x-1%29%7D%7Bx%5E%7B2%7D%7D%5Ccdot%5Cdfrac%7B1%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B-%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C-%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D%3D-1)
e por outro lado,
![\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{f(x)-f(1)}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{\frac{x-1}{x^{2}}-0}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{x-1}{x^{2}}\cdot\dfrac{1}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{1}{x^{2}}=1 \underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{f(x)-f(1)}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{\frac{x-1}{x^{2}}-0}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{x-1}{x^{2}}\cdot\dfrac{1}{x-1}\\ \\ \\ =\underset{x\to 1^{+}}{\mathrm{\ell im}}\,\dfrac{1}{x^{2}}=1](https://tex.z-dn.net/?f=%5Cunderset%7Bx%5Cto+1%5E%7B%2B%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7Bf%28x%29-f%281%29%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B%2B%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B%5Cfrac%7Bx-1%7D%7Bx%5E%7B2%7D%7D-0%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B%2B%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7Bx-1%7D%7Bx%5E%7B2%7D%7D%5Ccdot%5Cdfrac%7B1%7D%7Bx-1%7D%5C%5C+%5C%5C+%5C%5C+%3D%5Cunderset%7Bx%5Cto+1%5E%7B%2B%7D%7D%7B%5Cmathrm%7B%5Cell+im%7D%7D%5C%2C%5Cdfrac%7B1%7D%7Bx%5E%7B2%7D%7D%3D1)
As derivadas laterais são diferentes para
Logo,
não existe.
Já nos outros pontos domínio,
é derivável:
Para ![x>1: x>1:](https://tex.z-dn.net/?f=x%26gt%3B1%3A)
![f'(x)=\left[\dfrac{x-1}{x^{2}} \right ]'\\ \\ \\ f'(x)=\dfrac{(x-1)'\cdot x^{2}-(x-1)\cdot (x^{2})'}{(x^{2})^{2}}\\ \\ \\ f'(x)=\dfrac{1\cdot x^{2}-(x-1)\cdot 2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{x^{2}-2x^{2}+2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{-x^{2}+2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{x\cdot (-x+2)}{x^{4}}\\ \\ \\ f'(x)=\dfrac{-x+2}{x^{3}} f'(x)=\left[\dfrac{x-1}{x^{2}} \right ]'\\ \\ \\ f'(x)=\dfrac{(x-1)'\cdot x^{2}-(x-1)\cdot (x^{2})'}{(x^{2})^{2}}\\ \\ \\ f'(x)=\dfrac{1\cdot x^{2}-(x-1)\cdot 2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{x^{2}-2x^{2}+2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{-x^{2}+2x}{x^{4}}\\ \\ \\ f'(x)=\dfrac{x\cdot (-x+2)}{x^{4}}\\ \\ \\ f'(x)=\dfrac{-x+2}{x^{3}}](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cleft%5B%5Cdfrac%7Bx-1%7D%7Bx%5E%7B2%7D%7D+%5Cright+%5D%27%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7B%28x-1%29%27%5Ccdot+x%5E%7B2%7D-%28x-1%29%5Ccdot+%28x%5E%7B2%7D%29%27%7D%7B%28x%5E%7B2%7D%29%5E%7B2%7D%7D%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7B1%5Ccdot+x%5E%7B2%7D-%28x-1%29%5Ccdot+2x%7D%7Bx%5E%7B4%7D%7D%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7Bx%5E%7B2%7D-2x%5E%7B2%7D%2B2x%7D%7Bx%5E%7B4%7D%7D%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7B-x%5E%7B2%7D%2B2x%7D%7Bx%5E%7B4%7D%7D%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7Bx%5Ccdot+%28-x%2B2%29%7D%7Bx%5E%7B4%7D%7D%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cdfrac%7B-x%2B2%7D%7Bx%5E%7B3%7D%7D)
Para
ou ![0<x<1: 0<x<1:](https://tex.z-dn.net/?f=0%26lt%3Bx%26lt%3B1%3A)
![f'(x)=\left[\dfrac{1-x}{x^{2}} \right ]'\\ \\ \\ f'(x)=\left[\dfrac{-(x-1)}{x^{2}} \right ]'\\ \\ \\ f'(x)=-\left[\dfrac{x-1}{x^{2}} \right ]' f'(x)=\left[\dfrac{1-x}{x^{2}} \right ]'\\ \\ \\ f'(x)=\left[\dfrac{-(x-1)}{x^{2}} \right ]'\\ \\ \\ f'(x)=-\left[\dfrac{x-1}{x^{2}} \right ]'](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cleft%5B%5Cdfrac%7B1-x%7D%7Bx%5E%7B2%7D%7D+%5Cright+%5D%27%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D%5Cleft%5B%5Cdfrac%7B-%28x-1%29%7D%7Bx%5E%7B2%7D%7D+%5Cright+%5D%27%5C%5C+%5C%5C+%5C%5C+f%27%28x%29%3D-%5Cleft%5B%5Cdfrac%7Bx-1%7D%7Bx%5E%7B2%7D%7D+%5Cright+%5D%27)
Observe que é só trocar o sinal da expressão obtida para![x>1: x>1:](https://tex.z-dn.net/?f=x%26gt%3B1%3A)
![f'(x)=\dfrac{x-2}{x^{3}} f'(x)=\dfrac{x-2}{x^{3}}](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cdfrac%7Bx-2%7D%7Bx%5E%7B3%7D%7D)
Então, temos a expressão para a derivada de![f: f:](https://tex.z-dn.net/?f=f%3A)
![f'(x)=\left\{ \begin{array}{cl} \dfrac{-x+2}{x^{3}},&\text{se }x>1\\ \\ \dfrac{x-2}{x^{3}},&\text{se }x<0\,\text{ ou }\,0<x<1 \end{array} \right. f'(x)=\left\{ \begin{array}{cl} \dfrac{-x+2}{x^{3}},&\text{se }x>1\\ \\ \dfrac{x-2}{x^{3}},&\text{se }x<0\,\text{ ou }\,0<x<1 \end{array} \right.](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cleft%5C%7B+%5Cbegin%7Barray%7D%7Bcl%7D+%5Cdfrac%7B-x%2B2%7D%7Bx%5E%7B3%7D%7D%2C%26amp%3B%5Ctext%7Bse+%7Dx%26gt%3B1%5C%5C+%5C%5C+%5Cdfrac%7Bx-2%7D%7Bx%5E%7B3%7D%7D%2C%26amp%3B%5Ctext%7Bse+%7Dx%26lt%3B0%5C%2C%5Ctext%7B+ou+%7D%5C%2C0%26lt%3Bx%26lt%3B1+%5Cend%7Barray%7D+%5Cright.)
Agora, temos que estudar o sinal da derivada de![f: f:](https://tex.z-dn.net/?f=f%3A)
Para ![x>1: x>1:](https://tex.z-dn.net/?f=x%26gt%3B1%3A)
![\underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{----}{\_\_\_\_\_\_\_\_}\;\;\;\;\;-x+2\\ \\ \underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{++++}{\_\_\_\_\_\_\_\_}\;\;\;\;\;x^{3}\\ \\ \underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{----}{\_\_\_\_\_\_\_\_}\;\;\;\;\;f'(x)=\dfrac{-x+2}{x^{3}} \underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{----}{\_\_\_\_\_\_\_\_}\;\;\;\;\;-x+2\\ \\ \underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{++++}{\_\_\_\_\_\_\_\_}\;\;\;\;\;x^{3}\\ \\ \underset{1}{\circ}\overset{++++}{\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{----}{\_\_\_\_\_\_\_\_}\;\;\;\;\;f'(x)=\dfrac{-x+2}{x^{3}}](https://tex.z-dn.net/?f=%5Cunderset%7B1%7D%7B%5Ccirc%7D%5Coverset%7B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Coverset%7B----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3B-x%2B2%5C%5C+%5C%5C+%5Cunderset%7B1%7D%7B%5Ccirc%7D%5Coverset%7B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Coverset%7B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bx%5E%7B3%7D%5C%5C+%5C%5C+%5Cunderset%7B1%7D%7B%5Ccirc%7D%5Coverset%7B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Coverset%7B----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bf%27%28x%29%3D%5Cdfrac%7B-x%2B2%7D%7Bx%5E%7B3%7D%7D)
Para ![x<0: x<0:](https://tex.z-dn.net/?f=x%26lt%3B0%3A)
![\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;x-2\\ \\ \overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;x^{3}\\ \\ \overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;f'(x)=\dfrac{x-2}{x^{3}} \overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;x-2\\ \\ \overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;x^{3}\\ \\ \overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\;\;\;\;\;f'(x)=\dfrac{x-2}{x^{3}}](https://tex.z-dn.net/?f=%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bx-2%5C%5C+%5C%5C+%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bx%5E%7B3%7D%5C%5C+%5C%5C+%5Coverset%7B%2B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bf%27%28x%29%3D%5Cdfrac%7Bx-2%7D%7Bx%5E%7B3%7D%7D)
Para ![0<x<1: 0<x<1:](https://tex.z-dn.net/?f=0%26lt%3Bx%26lt%3B1%3A)
![\underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;x-2\\ \\ \underset{0}{\circ}\overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;x^{3}\\ \\ \underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;f'(x)=\dfrac{x-2}{x^{3}} \underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;x-2\\ \\ \underset{0}{\circ}\overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;x^{3}\\ \\ \underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\;\;\;\;\;f'(x)=\dfrac{x-2}{x^{3}}](https://tex.z-dn.net/?f=%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B1%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bx-2%5C%5C+%5C%5C+%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Coverset%7B%2B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B1%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bx%5E%7B3%7D%5C%5C+%5C%5C+%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B1%7D%7B%5Ccirc%7D%5C%3B%5C%3B%5C%3B%5C%3B%5C%3Bf%27%28x%29%3D%5Cdfrac%7Bx-2%7D%7Bx%5E%7B3%7D%7D)
Então o sinal da derivada de
fica:
![\overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{-----}{\_\_\_\_\_\_\_\_\_}\;\;\;f'(x) \overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{0}{\circ}\overset{-----}{\_\_\_\_\_\_\_\_\_}\underset{1}{\circ}\overset{+++++}{\_\_\_\_\_\_\_\_\_}\underset{2}{\bullet}\overset{-----}{\_\_\_\_\_\_\_\_\_}\;\;\;f'(x)](https://tex.z-dn.net/?f=%5Coverset%7B%2B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B0%7D%7B%5Ccirc%7D%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B1%7D%7B%5Ccirc%7D%5Coverset%7B%2B%2B%2B%2B%2B%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5Cunderset%7B2%7D%7B%5Cbullet%7D%5Coverset%7B-----%7D%7B%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%5C_%7D%5C%3B%5C%3B%5C%3Bf%27%28x%29)
e a derivada se anula em![x_{0}=2. x_{0}=2.](https://tex.z-dn.net/?f=x_%7B0%7D%3D2.)
Como a derivada troca de sinal ao longo de seu domínio, a função
não é monotônica em
Mas, nos intervalos em que o sinal de
não muda,
é monotônica:
é crescente em ![(-\infty;\,0); (-\infty;\,0);](https://tex.z-dn.net/?f=%28-%5Cinfty%3B%5C%2C0%29%3B)
é decrescente em ![(0;\,1]; (0;\,1];](https://tex.z-dn.net/?f=%280%3B%5C%2C1%5D%3B)
é crescente em ![[1;\,2]; [1;\,2];](https://tex.z-dn.net/?f=%5B1%3B%5C%2C2%5D%3B)
é decrescente em ![[2;\,+\infty). [2;\,+\infty).](https://tex.z-dn.net/?f=%5B2%3B%5C%2C%2B%5Cinfty%29.)
Observe que
e por outro lado,
As derivadas laterais são diferentes para
Já nos outros pontos domínio,
Observe que é só trocar o sinal da expressão obtida para
Então, temos a expressão para a derivada de
Agora, temos que estudar o sinal da derivada de
Então o sinal da derivada de
e a derivada se anula em
Como a derivada troca de sinal ao longo de seu domínio, a função
Perguntas interessantes
Matemática,
1 ano atrás
Química,
1 ano atrás
Português,
1 ano atrás
Química,
1 ano atrás
Química,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás