Matemática, perguntado por Giovanamorais, 1 ano atrás

analisando o gráfico da função quadrática abaixo.marquebo item que representa os zeros da função.

Anexos:

Soluções para a tarefa

Respondido por SammyBarbosa
4
) f(x) = 2x2 – 18
b) f(x) = x2 – 4x + 10
c) f(x) = - 2x2 + 20x – 50

Resolução

a) f(x) = x2 – 16

Inicialmente, devemos verificar os coeficientes da função do segundo grau:

a = 2, b = 0, c = - 18

Substitua os valores dos coeficientes na fórmula do discriminante/delta:



Como o delta é igual a 144, ele é maior que zero. Sendo assim, aplica-se a primeira condição, isto é, a parábola interceptará o eixo x em dois pontos distintos, ou seja, a função possui duas raízes reais diferentes. Como o coeficiente é maior do que zero, a concavidade fica para cima. O esboço do gráfico está logo abaixo:



b) f(x) = x2 – 4x + 10

Inicialmente, devemos verificar os coeficientes da função do segundo grau:

a = 1, b = - 4, c = 10

Substitua os valores dos coeficientes na fórmula do discriminante/delta:



O valor do discriminante é - 24 (menor que zero). Com isso, aplicamos a terceira condição, isto é, a parábola não intercepta o eixo x, logo, a função não possui nenhuma raiz real. Como a > 0, a concavidade da parábola fica para cima. Observe o esboço do gráfico:



c) f(x) = - 2x2 + 20x – 50

Inicialmente, devemos verificar os coeficientes da função do segundo grau.

a = - 2, b = 20, c = - 50

Substitua os valores dos coeficientes na fórmula do discriminante/delta:

 

O valor de delta é 0, logo, aplica-se a segunda condição, isto é, a função possui uma única raiz real, e a parábola tangencia o eixo x. Como a < 0, a concavidade da parábola fica para baixo. Veja o esboço do gráfico:



Perguntas interessantes