Matemática, perguntado por marcosgplay1607, 7 meses atrás

Analisando o Gráfico:

1) Analisando o gráfico acima, identifique a lei da função e depois responda as questões a) e b):
f(x) = x - 1 ; a) x = 3; b) x > 0
f(x) = x - 3 ; a) x = 1; b) x > 1
f(x) = x - 3 ; a) x = 3; b) x > 3
f(x) = x + 3 ; a) x = 1; b) x > 1

Anexos:

Soluções para a tarefa

Respondido por danift4567
4

Resposta:

correta:f(x) = x - 3 ; a) x = 1; b) x > 1

Raiz da função afim

A raiz da função afim é o ponto em que ela atravessa o eixo x, isto é, o ponto em que y = 0. Isso quer dizer que, para descobrir a raiz de uma função afim, basta substituir o y por 0 na fórmula. Ao fazer isso, você tem:

f(x) = ax + b

0 = ax + b

ax = -b

x = -b/a

Dessa maneira, a raiz da função afim é o ponto -b/a no eixo x. As funções de 1º grau têm apenas uma raiz.

Gráfico da função afim

função afim

O gráfico da função afim é uma reta crescente ou decrescente. A reta somente não pode ser perpendicular aos eixos x ou y.

Como encontrar dois pontos no gráfico

Como o gráfico da função afim é uma reta, você só precisa de dois pontos para traçá-lo. O primeiro é o ponto da raiz, que você já viu. O segundo é o ponto em que a reta atravessa o eixo y, isto é, em que o x = 0. Nesse ponto, y = b.

f(x) = ax + b

y = a . 0 + b

y = b

Portanto, os dois pontos que você precisa para traçar a reta do gráfico são (-b/a, 0) e (0, b).

Coeficientes da função afim

A função afim tem dois coeficientes: angular e linear.

O coeficiente angular corresponde, na função, ao a. No gráfico, é a tangente do ângulo α (alfa), formado pela intersecção entre a reta da função e o eixo x. Enquanto isso, o coeficiente linear corresponde, na função, ao b. No gráfico, é o ponto de interseção entre a reta da função e o eixo y.

Função afim crescente e decrescente

Você pode determinar a direção da reta do gráfico da função a partir do coeficiente angular, que também é chamado de taxa de crescimento. Quando o coeficiente é maior do que zero, temos uma função afim crescente; quando é menor do que zero, temos uma função afim decrescente.

Tipos de função afim

função afim

Existem alguns tipos específicos de função afim, que recebem nomes diferentes. Estamos falando da função linear, identidade e constante. Vamos ver quais são as características de cada uma?

Linear

A função afim é linear quando b = 0, sendo que a ≠ 0. Nesses casos, o gráfico necessariamente passa pelo ponto (0,0). A fórmula da função afim constante também pode ser expressa assim:

função linear

Identidade

A função afim é identidade quando a = 1 e b = 0. Nesses casos, o gráfico necessariamente passa pelo ponto (0,0), e o ângulo α é de 45º. A fórmula da função afim identidade também pode ser expressa assim:

função identidade

Constante

A função afim é constante quando a = 0. Nesses casos, o gráfico é paralelo ao eixo x. A fórmula da função afim constante também pode ser expressa assim:

função constante

Exercícios de função afim (com resolução)

função afim

Agora que você já conferiu os principais conceitos relacionados a função afim, teste seus conhecimentos com os exercícios abaixo!

Exercício 1

Se f(x) = 3x + 2, qual o valor de x para que f(x) = 5?

a. 0

b. 1

c. 2

d. 3

e. 4

Resposta: b

f(x) = 3x + 2

5 = 3x + 2

3x = 5 – 2

3x = 3

x = 1

Exercício 2

Uma função é dada por f(x) = 3x – 6. A raiz dessa função é:

a. 0

b. 1

c. 2

d. 3

e. 4

Resposta: c

f(x) = 3x – 6

0 = 3x – 6

3x = 6

x = 2

Exercício 3

Considere a função f(x) = -2x + 1. Os valores de f(0), f(2), f(-1) e f(5), são, respectivamente:

a. 1, -3, 3, -9

b. -1, 3, -3, -9

c. 1, 5, 3, 11

d. -1, -5, -3, -11

e. 1, 2, 1, 5

Resposta: a

f(x) = -2x + 1

Se x = 0,

f(x) = -2 . 0 + 1

f(x) = 0 + 1

f(x) = 1

Se x = 2,

f(x) = -2 . 2 + 1

f(x) = -4 + 1

f(x) = -3

Se x = -1,

f(x) = -2 . -1 + 1

f(x) = 2 + 1

f(x) = 3

Se x = 5,

f(x) = -2 . 5 + 1

f(x) = -10 + 1

f(x) = -9

Exercício 4

Uma função do 1º grau é dada por f(x) = ax + b. Sabe-se que f(1) = 5 e f(-3) = -7. Essa função é:

a. f(x) = x + 5

b. f(x) = -3x -7

c. f(x) = -3x + 2

d. f(x) = 3x + 2

e. f(x) = x + 4

Resposta: d

f(1) = 5

a . 1 + b = 5

a + b = 5

f(-3) = -7

a . -3 + b = -7

-3a + b = -7

Montando o sistema

a + b = 5

3a – b = 7 (invertendo -3a + b = -7)

4a = 12

a = 3

Se a + b = 5, e a = 3, então:

3 + b = 5

b = 5 – 3 = 2

Assim, a função é:

f(x) = 3x + 2


vitoria7587474: obg
Perguntas interessantes