Alunos dos cursos de saúde de uma faculdade participaram de um estudo que visa estudar a taxa de colesterol total sérico pelo método enzimático. Para isso, foram escolhidos aleatoriamente 12 voluntários saudáveis da população de alunos que realizam esses cursos. Os resultados obtidos (em mg/dl) estão presentes a seguir.
240 85 90 115 106 123 78 90 93 101 109 210
-Calcule as medidas de tendência central: média, mediana e moda.
-Calcule as medidas de dispersão: amplitude, variância, desvio padrão e coeficiente de variação.
-Represente os dados por meio de um histograma.
Soluções para a tarefa
Resposta:
Alunos dos cursos de saúde de uma faculdade participaram de um estudo que visa estudar a taxa de colesterol total sérico pelo método enzimático. Para isso, foram escolhidos aleatoriamente 12 voluntários saudáveis da população de alunos que realizam esses cursos. Os resultados obtidos (em mg/dl) estão presentes a seguir.
240, 85, 90, 115, 106, 123, 78, 90, 93, 101, 109, 210
78, 85, 90, 90, 93, 101, 106, 109, 115, 123, 210, 240
As medidas de tendência central são aquelas que buscam refletir o ponto de equilíbrio dos dados.
Para Gouveia (2021) a média (Me) é calculada somando-se todos os valores de um conjunto de dados e dividindo-se pelo número de elementos deste conjunto.
Como a média é uma medida sensível aos valores da amostra, é mais adequada para situações em que os dados são distribuídos mais ou menos de forma uniforme, ou seja, valores sem grandes discrepâncias.
Assim, a média:
Me = 78+85+90+90+93+101+106+109+115+123+210+240 = 1.440 = 120
12 12
Então: a Me = 120 mg/dl.
A Mediana (Md) representa o valor central de um conjunto de dados. Para encontrar o valor da mediana é necessário colocar os valores em ordem crescente ou decrescente (GOUVEIA, 2021).
Quando o número elementos de um conjunto é par, a mediana é encontrada pela média dos dois valores centrais. Assim, esses valores são somados e divididos por dois.
Md = 101 + 106 = 207 = 103,5.
2 2
Assim, a Md = 103,5 mg/dl.
A moda é o valor em que a frequência dos seus dados é maior. Então para encontrar a moda desse conjunto poderíamos fazer uma tabela de frequência e ver qual é o número mais frequente (TEMPORAL, 2019).
Número Frequência
78 1
85 1
90 2
93 1
101 1
106 1
109 1
115 1
123 1
210 1
240 1
Conforme a tabela de frequência pode-se constatar que a moda é: 90. porque o 90 é o número mais frequente.
As medidas de dispersão são aplicadas para determinar o grau de variação dos números de uma lista com relação à sua média. De certa forma, as medidas de dispersão analisam a distância dos números de um conjunto até a média desse conjunto: amplitude, variância, desvio padrão e coeficiente de variação (SILVA, 2021).
A amplitude é a diferença entre o maior elemento desse conjunto e o menor. Em outras palavras, para encontrar a amplitude de uma lista de números, basta subtrair o menor elemento do maior.
A = Xmaior - Xmenor = 240 – 78 = 162.
A = 162 mg/dl.
A variância é determinada pela média dos quadrados das diferenças entre cada uma das observações e a média aritmética da amostra. O cálculo é feito com base na seguinte fórmula:
Vp = (78 - 120)2 + (85 – 120)2 + (90 – 120)2 + (90 – 120)2 + (93 – 120)2 + (101 – 120)2 + (106 – 120)2 + (109 – 120)2 + (115 – 120)2 + (123 – 120)2 + (210 – 120)2 + (240 – 120)2
12
Vp = (- 42)2 + (- 35)2 + (- 30)2 + (- 30)2 + (- 27)2 + (- 19)2 + (- 14)2 + (- 11)2 + (- 5)2 + (3)2 + (90)2 + (120)2 =
12
Vp = 1764 + 1225 + 900 + 900 + 729 + 361 + 196 + 121 + 25 + 9 + 8100 + 14400 =
12
Vp = 28730 Vp = 2.394,16 mg/dl2
12
E a variância da amostra é: Va = 28730 = 28730 = 2.611, 81 mg/dl2
12 – 1 11
O desvio padrão é definido como a raiz quadrada da variância. Desta forma, a unidade de medida do desvio padrão será a mesma da unidade de medida dos dados, o que não acontece com a variância (RIBEIRO, 2021).
Assim, o desvio padrão é encontrado fazendo-se:
DP = √var
DP = √2394,16
DP da população = 48,93.
DP da amostra = √2611,81
DP da amostra = 51,10.
Quando todos os valores de uma amostra são iguais, o desvio padrão é igual a 0. Sendo que, quanto mais próximo de 0, menor é a dispersão dos dados.
O coeficiente de variação é utilizado quando precisamos comparar variáveis que apresentam médias diferentes.
Para encontrar o coeficiente de variação, devemos multiplicar o desvio padrão por 100 e dividir o resultado pela média. Essa medida é expressa em porcentagem.
CV = 100 x DP CV: 100 x 48,93 CV= 40,77%.
MA 120
O histograma é uma espécie de gráfico de barras que demonstra uma distribuição de frequências. No histograma, a base de cada uma das barras representa uma classe e a altura representa a quantidade ou frequência absoluta com que o valor de cada classe ocorre. Ao mesmo tempo, ele pode ser utilizado como um indicador de dispersão de processos (SIQUIERA, 2021).
Represente os dados por meio de um histograma.
O Histograma demostra que a população estuda que foram 12 alunos, em seguida foi colhido o sangue de cada para realizar o colesterol total e posteriormente obtiveram os seguintes resultados.
O primeiro representa a quantidade de alunos que estão com o colesterol abaixo de 100 mg/dl, que são 5 alunos e representa 41, 6% da população.
O segundo 2 representa a quantidade de alunos que estão com o colesterol abaixo de 200 mg/dl, que são 5 alunos e representa 41, 6% da população.
O terceiro 3 representa a quantidade de alunos que estão com o colesterol abaixo de 300 mg/dl, que são 2 alunos e representa 16, 6% da população.
Explicação: