alguém sabe fazer isso
Anexos:
Soluções para a tarefa
Respondido por
1
y + (x/2) = -1/3 --> 1ª equação
4x + 3y = 2 ---> 2ª equação
isolando o y na primeira equação, temos:
y= (-1/3) - (x/2)
substituindo y da primeira equação para a segunda equação, temos:
4x + 3[ (-1/3) - (x/2)] = 2
4x + 3[ (-2-3x)/6 ]=2
4x - (6 - 9x)/6 = 2
(24x - 6 - 9x)/6 = 2
24x - 6 - 9x = 12
24x - 9x=12+6
15x=18
x=18/15
simplicando e dividindo por 3
x= 6/5
substituindo x na segunda equação ( ou na primeira, tanto faz)
4(6/5) + 3y = 2
24/5 + 3y = 2
(24+15y)/5 = 2
24+15y = 2. (5)
24+15y= 10
15y=10 - 24
15y = -14
y= -14/15
substituindo os valores encontrados nas duas equações para ver se o resultado está correto.
4(6/5) + 3(-14/15) = 2
(24/5) - (42/15) = 2
(72 - 42)/15 = 2
30/15 = 2
2 = 2 (Logo, o resultado está correto)
4x + 3y = 2 ---> 2ª equação
isolando o y na primeira equação, temos:
y= (-1/3) - (x/2)
substituindo y da primeira equação para a segunda equação, temos:
4x + 3[ (-1/3) - (x/2)] = 2
4x + 3[ (-2-3x)/6 ]=2
4x - (6 - 9x)/6 = 2
(24x - 6 - 9x)/6 = 2
24x - 6 - 9x = 12
24x - 9x=12+6
15x=18
x=18/15
simplicando e dividindo por 3
x= 6/5
substituindo x na segunda equação ( ou na primeira, tanto faz)
4(6/5) + 3y = 2
24/5 + 3y = 2
(24+15y)/5 = 2
24+15y = 2. (5)
24+15y= 10
15y=10 - 24
15y = -14
y= -14/15
substituindo os valores encontrados nas duas equações para ver se o resultado está correto.
4(6/5) + 3(-14/15) = 2
(24/5) - (42/15) = 2
(72 - 42)/15 = 2
30/15 = 2
2 = 2 (Logo, o resultado está correto)
viihtor:
Nossa muito boa sua explicação obrigado '
Perguntas interessantes