Matemática, perguntado por elisa555, 1 ano atrás

Alguém sabe como resolver:

Encontre fog e gof para:

a) f(x)= x²−1 e     g(x) =2x−3

b) f(x) = x² −1 e    g(x)=  1/x-1

Soluções para a tarefa

Respondido por lucas7661
0
Isso é função composta, fog = f(g(x)) e gof  = g(f(x))

A) fog

f(g(x)) = (g(x))^2 -1

f(g(x)) = (2x-3)^2 -1

f(g(x)) = 4x^2-12x+8

A) gof

g(f(x)) = 2(f(x)) -3

g(f(x)) =2(x^2-1) -3

g(f(x)) =2x^2-5

_____________________________________________________

B) fog

f(g(x)) = (g(x))^2 -1

f(g(x)) = ( \frac{1}{x-1} )^2 -1

f(g(x)) =\frac{1}{(x-1)^2} -1

B)gof

g(f(x)) = \frac{1}{f(x)-1}

g(f(x)) = \frac{1}{(x^2-1)-1}

g(f(x)) = \frac{1}{x^2-2}

Perguntas interessantes