Matemática, perguntado por synaragabriela790, 6 meses atrás

Alguém por favor me ajuda nessas questões ???

1- Suponha que o tempo necessário para atendimento de clientes em uma central de atendimento telefônico siga uma distribuição normal de média de 8 minutos e desvio padrão de 2 minutos.


a) Qual é a probabilidade de que um atendimento dure menos de 4 minutos?
b) E mais do que 10 minutos?
c) E entre 6 e 10 minutos?

2- A concentração de aditivos químicos em um tanque de água liberada pela fábrica Alpha tem distribuição N (8; 2,25). Qual a probabilidade, de que num dia aleatório, a concentração seja maior que 9 ppm?

3- Uma empresa de carros sabe que os motores de sua fabricação têm duração normal com média 150000 km e desvio-padrão de 5000 km. Qual a probabilidade de que um carro, escolhido ao acaso, dos fabricados por essa firma, tenha um motor que dure:

a) Menos de 170000 km?
b) Entre 140000 km e 165000 km?
c) Se a fábrica substitui o motor que apresenta duração inferior à garantia, qual deve ser esta garantia para que a porcentagem de motores substituídos seja inferior a 0,2%?


4- Suponha que o escore dos estudantes no ENEM seja uma variável aleatória com distribuição normal com média 550 e variância 900. Se a admissão no curso de Administração exige um escore mínimo de 575, qual é a probabilidade de um estudante ser admitido?

Soluções para a tarefa

Respondido por EinsteindoYahoo
1

Olhe no anexo a tabela que eu usei ,

disponível na rede, olhe a curva de Gauss

1)

média=8

DP=2

a)

P(X<4) =P[(X-8)/2 < (4-8)/2)]  

=P(Z < -2) = ψ(-2)  

= 1-ψ(2)   .....ψ(2) ==>tabela Normal Padrão

P(X<4) = =1-0,9772 =0,0228   é a resposta

b)

P(X>10)=P[X-8)/2 >(10-8)/2]

=P[Z > 1]

= 1 -ψ(1)    ...ψ(1)==>  tabela Normal Padrão

=1 -0,8413=0,1587  é a resposta  

c)

P(6 < X < 10) =P[(6-8)/2 < Z < (10-8)/2]  

=ψ(1) - ψ(-1)  

=ψ(1)-[1-ψ(1)]    ...ψ(1)==>  tabela Normal Padrão

=0,8413 -(1 - 0,8413 ) = 0,6826 é a resposta

_______________________________________________

2)

N (8; 2,25)

média=8

DP=2,25

P[X>9]=P[9-8)/2,25 >(9-8)/2,25]

=P[Z>0,44444] =1 - ψ(0,4444)  

ψ(0,4444) ..valor da tabela  Normal Padrão

P[X>9]=1-0,6720 =0,328  é a resposta

______________________________________________

3)

média=150000 km

DP= 5000 km

a)

P[X<170000]=P[Z<(170000-150000)/5000)]

=P[Z<4]  ..ñ tem na tabela ..3,5  já é proximo de 1

=P[Z<4]  =  1 é a resposta

b)

P[ 14000< X<165000]

=P[(140000-150000)/5000< Z<(165000-150000)/5000]

P[-2<Z<3]= ψ(3)-[1-ψ2]

=0,9987 -(1-0,9772) =0,9759

c)

0,2%=0,002

P[X<a]=0,002

P[Z<(a-150000)/5000]=0,002

na tabela (1-0,002) = 0,9980

tabela = -2,88

(a-150000)/5000=-2,88

a=-2,88*5000+150000 = 135600 km

__________________________________________

4)

média=550

Var=900 ==>DP=30

P[X>575]=P[Z>(575-550)/30]

=P[Z>0,8333]=1 -ψ(0,833)

=1 -0,7970 =0,203 é a resposta

Perguntas interessantes