Alguém poderia me mostrar os passos dessa derivação?
Soluções para a tarefa
Regra do produto =a*b ==>derivada =a'*b+a*b'
dy/dx = 2*(tan(x))'*sec²(x) + 2*(tan(x))*(sec²(x))'
_________________________________________
(tan(x))'=
Regrado quociente ==>a/b ==>derivada (a'*b- a*b')/b²
(tan(x))' =sen(x)/cos(x)=((sen(x))' *cos(x)-sen(x)*(cos(x))')/cos²(x)
(tan(x))' =((cos(x) *cos(x)-sen(x)*(-sen(x)))/cos²(x)
(tan(x))' =((cos²(x)+sen²(x))/cos²(x)
###sen²(x)+cos²(x)=1
(tan(x))' =1/cos²(x) =sec²(x)
(tan(x))' =sec²(x)
(sec²(x))'=?
Regra da cadeia
(sec²(x))' =(sec(x))' * 2*sec(x)
(sec(x))'=(1/cos(x))'=[(1)' *cos(x)-1*(cos(x))']/cos²(x)
(sec(x))'=[0 *cos(x)+sen(x)]/cos²(x) =sen(x)*sec²(x)
(sec²(x))' =sen(x)*sec²(x) * 2sec(x)
(sec²(x))' =2*sen(x)*sec³(x) =2*(sen(x)/cos(x)) *sec²(x)
(sec²(x))' =2*tan(x) *sec²(x)
_________________________________________
dy/dx = 2*sec²(x)*sec²(x)+2*tan(x)*2*tan(x) *sec²(x)
dy/dx = 2*sec²(x)*sec²(x)+2*tan(x)*2*tan(x) *sec²(x)
dy/dx = 2*sec²(x)*[2*tan(x) +sec²(x)]