Alguém poderia me ajudar a fazer esses cálculos? Não estou conseguindo. Tem que encontrar o valor das areas
Soluções para a tarefa
Esta aqui tudo explicado e feito
Boa Tarde!
Na resolução, usarei Teorema de Pitágoras e Teorema de Poncelet.
Teorema de Pitágoras: Em um triângulo retângulo a soma dos quadrados dos catetos é igual a hipotenusa ao quadrado, ou seja, chamando os catetos de a e b e a hipotenusa de c, temos que:
c²=a²+b²
Teorema de Poncelet: a soma dos catetos é igual a hipotenusa mais 2 vezes o raio da circunferência inscrita a esse triângulo, ou seja, c=b+a+2r.
Como calcular a área de um triângulo usando o raio da circunferência inscrita: Semi perímetro vezes o raio.
03-Usando Teorema de Pitágoras nos triângulos de hipotenusa x, temos que a hipotenusa desses triângulos é igual a √12²+5², ou seja, √169(que e´igual a 13).Como a hipotenusa é também o lado do quadrado hachurado, temos que a área do quadrado é igual a 13², ou seja, 169.
04-a)Perceba que h é equivalente ao cateto adjacente ao lado do quadrado.Para calcular a base desse triângulo, precisamos perceber que o segmento DC-AB dará o comprimento da base do triângulo, logo a base dele é 6.Usando Teorema de Pitágoras nesse triângulo, temos que a hipotenusa é igual a 10m, e aplicando Pitágoras, temos que 10²=6²+h², logo, a altura(h) para que satisfaça a equação deve ser 8.
b)Usando teorema de Poncelet, temos que o raio da circunferência inscrita a esse triângulo é 2m.Usando a fórmula para calcular a área de um triângulo pela circunferência inscrita, temos que a área do triângulo equivale a (10+6+8):2 x 2, que é igual a 24m².
Se a base do triângulo vale 6, logo o lado paralelo a AB menos a base do triângulo vale 10m, e afirmamos então que a figura é um quadrado.Sendo que é um quadrado de lado 10m, temos que sua área é 100m².
Somando as 2 áreas, temos que o canteiro tem 124m².
Espero ter ajudado e boa sorte com os estudos!