Matemática, perguntado por 20120143, 10 meses atrás

alguém pode tirar uma dúvida de equação? Então, comecei a aprender as equações estou com dificuldade. Alguém pode me explicar?

Soluções para a tarefa

Respondido por patoreilendariosagra
1

Resposta:

Podemos definir equação como uma sentença matemática que possui igualdade entre duas expressões algébricas e uma ou mais incógnitas (valores desconhecidos) que são expressadas por letras. Sendo assim, toda equação precisa ter:

   Sinal de igualdade;

   Primeiro membro (antes do sinal de igualdade) e segundo membro (depois do sinal de igualdade);

   Incógnita, que é representada, geralmente, por x, y e z.

   Veja os exemplos a seguir e identifique se são equações:

⇒ a) 2x – 6 = 2

Características:

Primeiro membro: 2x – 6

Segundo membro: 2

Possui sinal de igualdade e x é o termo desconhecido; logo, 2x – 6 = 2 é uma equação.

⇒ b) 2 + 4 = 2 – 3

Características:

Primeiro membro: 2 + 4

Segundo membro: 2 – 3

Possui sinal de igualdade, mas não tem incógnita; logo, 2 + 4 = 2 – 3 não é uma equação.

⇒ c) 2x +3y – 1

Nesse exemplo, temos somente uma expressão algébrica. Não é possível determinar o primeiro e o segundo membro, pois a expressão não possui sinal de igualdade. Portanto, 2x +3y – 1 não é uma equação.

Graus da Equação

Existem graus distintos para a equação. Nas equações que possuem somente uma incógnita, o grau é determinado pelo maior valor que os seus expoentes assumem. Veja os exemplos a seguir:

⇒ 2x2 + x = 4

Essa é uma equação de grau 2. Isso porque o maior expoente da incógnita x é 2.

⇒ y5 + 2y4 – y3 + 3y2 + y + 1 = 0

A equação é de grau 5. Observe que 5 é o maior grau para a incógnita y.

Quando a equação possui mais do que uma incógnita, podemos expressar o grau em relação à equação como um todo. Para isso, devemos avaliar o grau de cada monômio da equação. Observe o exemplo:

⇒ Dada a equação: x2y2 + 3x3 = – 5yx, identifique o seu grau em relação à incógnita x e y. Em seguida, encontre o seu grau geral.

- Grau da equação em relação à incógnita x → 3, porque 3 é o maior valor para o expoente de x.

- Gau da equação em relação à incógnita y → 2, porque 2 é o maior valor para o expoente de y.

- Grau geral da equação → 4, pois 4 é o maior grau dos monômios da equação. Veja como cada monômio deve ser avaliado para obtermos essa conclusão:

x2y2 → 2 + 2 = 4 → 4 é o grau do monômio x2y2;

3x3 = 3x3y0 → 3 + 0 = 3 → 3 é o grau do monômio 3x3

5yx → 1 + 1 = 2 → 2 é o maior grau do monômio 5yx.


20120143: obrigada!
patoreilendariosagra: De nada =v=
Perguntas interessantes