Alguém pode me ajudar nessa questão ?
Desde já agradeço .
Anexos:
![](https://pt-static.z-dn.net/files/de7/34fe89be0e885770fcf90ee5e96bb114.jpg)
Soluções para a tarefa
Respondido por
1
Numerador:
![\left(\dfrac{4,666...-3,625}{0,15625-0,1041666...}\right)^{2} \left(\dfrac{4,666...-3,625}{0,15625-0,1041666...}\right)^{2}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B4%2C666...-3%2C625%7D%7B0%2C15625-0%2C1041666...%7D%5Cright%29%5E%7B2%7D)
Denominador:
![\dfrac{1,625-0,41666...}{0,09666...} \dfrac{1,625-0,41666...}{0,09666...}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%2C625-0%2C41666...%7D%7B0%2C09666...%7D)
Vamos resolver primeiro o NUMERADOR:
Para resolver de forma mais fácil, primeiramente transformamos as dízimas em frações (frações geratriz da dízima):
Para 4,666...
![x=4,666...\\ \\
10x=46,666...\\ \\
10x-x=46,666...-4,666...\\ \\
9x=42\\ \\
x=\dfrac{42}{9} x=4,666...\\ \\
10x=46,666...\\ \\
10x-x=46,666...-4,666...\\ \\
9x=42\\ \\
x=\dfrac{42}{9}](https://tex.z-dn.net/?f=x%3D4%2C666...%5C%5C+%5C%5C%0A10x%3D46%2C666...%5C%5C+%5C%5C%0A10x-x%3D46%2C666...-4%2C666...%5C%5C+%5C%5C%0A9x%3D42%5C%5C+%5C%5C%0Ax%3D%5Cdfrac%7B42%7D%7B9%7D)
Para 3,625
Andamos com a vírgula para a direita e dividimos por 1 seguido de tantos zeros quantas casas andamos:
![\dfrac{3625}{1000} \dfrac{3625}{1000}](https://tex.z-dn.net/?f=%5Cdfrac%7B3625%7D%7B1000%7D)
Para 0,15625
Mesmo procedimento anterior:
![\dfrac{15625}{100000} \dfrac{15625}{100000}](https://tex.z-dn.net/?f=%5Cdfrac%7B15625%7D%7B100000%7D)
Para 0,1041666...
Mesmo procedimento que usamos para o primeiro número, com a diferença que vamos multiplicando o número inicial por 10, 100, 1000, 10000, 100000, até chegarmos à dízima. Então subtraímos a última pela penúltima multiplicação:
![x=0,1041666...\\ \\
10x=1,041666...\\ \\
100x=10,41666...\\ \\
1000x=104,1666...\\ \\
10000x=1041,666...\\ \\
100000x=10416,666...\\ \\
100000x-10000x=10416,666...-1041,666...\\ \\
90000x=9375\\ \\
x=\dfrac{9375}{90000}
x=0,1041666...\\ \\
10x=1,041666...\\ \\
100x=10,41666...\\ \\
1000x=104,1666...\\ \\
10000x=1041,666...\\ \\
100000x=10416,666...\\ \\
100000x-10000x=10416,666...-1041,666...\\ \\
90000x=9375\\ \\
x=\dfrac{9375}{90000}](https://tex.z-dn.net/?f=x%3D0%2C1041666...%5C%5C+%5C%5C%0A10x%3D1%2C041666...%5C%5C+%5C%5C%0A100x%3D10%2C41666...%5C%5C+%5C%5C%0A1000x%3D104%2C1666...%5C%5C+%5C%5C%0A10000x%3D1041%2C666...%5C%5C+%5C%5C%0A100000x%3D10416%2C666...%5C%5C+%5C%5C%0A100000x-10000x%3D10416%2C666...-1041%2C666...%5C%5C+%5C%5C%0A90000x%3D9375%5C%5C+%5C%5C%0Ax%3D%5Cdfrac%7B9375%7D%7B90000%7D%0A)
Agora temos:
![\left(\dfrac{\dfrac{42}{9}-\dfrac{3625}{1000}}{\dfrac{15625}{100000}-\dfrac{9375}{90000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{42\cdot 1000-3625\cdot 9}{9000}}{\dfrac{15625\cdot 90000-9375\cdot 100000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{42000-32625}{9000}}{\dfrac{1.406.250.000-937.500.000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{9375}{9000}}{\dfrac{468.750.000}{9.000.000.000}}\right)^{2} \left(\dfrac{\dfrac{42}{9}-\dfrac{3625}{1000}}{\dfrac{15625}{100000}-\dfrac{9375}{90000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{42\cdot 1000-3625\cdot 9}{9000}}{\dfrac{15625\cdot 90000-9375\cdot 100000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{42000-32625}{9000}}{\dfrac{1.406.250.000-937.500.000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{9375}{9000}}{\dfrac{468.750.000}{9.000.000.000}}\right)^{2}](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B42%7D%7B9%7D-%5Cdfrac%7B3625%7D%7B1000%7D%7D%7B%5Cdfrac%7B15625%7D%7B100000%7D-%5Cdfrac%7B9375%7D%7B90000%7D%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B42%5Ccdot+1000-3625%5Ccdot+9%7D%7B9000%7D%7D%7B%5Cdfrac%7B15625%5Ccdot+90000-9375%5Ccdot+100000%7D%7B9.000.000.000%7D%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B42000-32625%7D%7B9000%7D%7D%7B%5Cdfrac%7B1.406.250.000-937.500.000%7D%7B9.000.000.000%7D%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B9375%7D%7B9000%7D%7D%7B%5Cdfrac%7B468.750.000%7D%7B9.000.000.000%7D%7D%5Cright%29%5E%7B2%7D)
![\left(\dfrac{\dfrac{9375}{9000}}{\dfrac{468.750.000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{9375}{9000}}{\dfrac{46.875}{900.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{9375}{9000}}\cdot \dfrac{900.000}{46.875}\right)^{2}\\ \\ \\ \left(\dfrac{9375}{9}}\cdot \dfrac{900}{46.875}\right)^{2}\\ \\ \\ \left(9375\cdot \dfrac{100}{46.875}\right)^{2}\\ \\ \\ \left(1\cdot \dfrac{100}{5}\right)^{2}\\ \\ \\ \left(20\right)^{2}=400 \left(\dfrac{\dfrac{9375}{9000}}{\dfrac{468.750.000}{9.000.000.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{\dfrac{9375}{9000}}{\dfrac{46.875}{900.000}}\right)^{2}\\ \\ \\ \\ \left(\dfrac{9375}{9000}}\cdot \dfrac{900.000}{46.875}\right)^{2}\\ \\ \\ \left(\dfrac{9375}{9}}\cdot \dfrac{900}{46.875}\right)^{2}\\ \\ \\ \left(9375\cdot \dfrac{100}{46.875}\right)^{2}\\ \\ \\ \left(1\cdot \dfrac{100}{5}\right)^{2}\\ \\ \\ \left(20\right)^{2}=400](https://tex.z-dn.net/?f=%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B9375%7D%7B9000%7D%7D%7B%5Cdfrac%7B468.750.000%7D%7B9.000.000.000%7D%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B%5Cdfrac%7B9375%7D%7B9000%7D%7D%7B%5Cdfrac%7B46.875%7D%7B900.000%7D%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B9375%7D%7B9000%7D%7D%5Ccdot+%5Cdfrac%7B900.000%7D%7B46.875%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cleft%28%5Cdfrac%7B9375%7D%7B9%7D%7D%5Ccdot+%5Cdfrac%7B900%7D%7B46.875%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cleft%289375%5Ccdot+%5Cdfrac%7B100%7D%7B46.875%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cleft%281%5Ccdot+%5Cdfrac%7B100%7D%7B5%7D%5Cright%29%5E%7B2%7D%5C%5C+%5C%5C+%5C%5C+%5Cleft%2820%5Cright%29%5E%7B2%7D%3D400)
Agora vamos resolver o DENOMINADOR:
![\dfrac{1,625-0,41666...}{0,09666...} \dfrac{1,625-0,41666...}{0,09666...}](https://tex.z-dn.net/?f=%5Cdfrac%7B1%2C625-0%2C41666...%7D%7B0%2C09666...%7D)
Para 1,625
![\dfrac{1625}{1000} \dfrac{1625}{1000}](https://tex.z-dn.net/?f=%5Cdfrac%7B1625%7D%7B1000%7D)
Para 0,41666...
![x=0,41666...\\ \\
10x=4,1666...\\ \\
100x=41,666...\\ \\
1000x=416,666...\\ \\
1000x-100x=416,666...-41,666...\\ \\
900x=375\\ \\
x=\dfrac{375}{900} x=0,41666...\\ \\
10x=4,1666...\\ \\
100x=41,666...\\ \\
1000x=416,666...\\ \\
1000x-100x=416,666...-41,666...\\ \\
900x=375\\ \\
x=\dfrac{375}{900}](https://tex.z-dn.net/?f=x%3D0%2C41666...%5C%5C+%5C%5C%0A10x%3D4%2C1666...%5C%5C+%5C%5C%0A100x%3D41%2C666...%5C%5C+%5C%5C%0A1000x%3D416%2C666...%5C%5C+%5C%5C%0A1000x-100x%3D416%2C666...-41%2C666...%5C%5C+%5C%5C%0A900x%3D375%5C%5C+%5C%5C%0Ax%3D%5Cdfrac%7B375%7D%7B900%7D)
Para 0,09666...
![x=0,09666...\\ \\
10x=0,9666...\\ \\
100x=9,666...\\ \\
1000x=96,666...\\ \\
1000x-100x=96,666...-9,666...\\ \\
900x=87\\ \\
x=\dfrac{87}{900} x=0,09666...\\ \\
10x=0,9666...\\ \\
100x=9,666...\\ \\
1000x=96,666...\\ \\
1000x-100x=96,666...-9,666...\\ \\
900x=87\\ \\
x=\dfrac{87}{900}](https://tex.z-dn.net/?f=x%3D0%2C09666...%5C%5C+%5C%5C%0A10x%3D0%2C9666...%5C%5C+%5C%5C%0A100x%3D9%2C666...%5C%5C+%5C%5C%0A1000x%3D96%2C666...%5C%5C+%5C%5C%0A1000x-100x%3D96%2C666...-9%2C666...%5C%5C+%5C%5C%0A900x%3D87%5C%5C+%5C%5C%0Ax%3D%5Cdfrac%7B87%7D%7B900%7D)
Agora temos:
![\dfrac{\dfrac{1625}{1000}-\dfrac{375}{900}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1625\cdot 900-375\cdot 1000}{900000}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1462500-375000}{900000}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1087500}{900000}}{\dfrac{87}{900}}=\ \dfrac{\dfrac{10875}{9000}}{\dfrac{87}{900}}=\ \dfrac{10875}{9000}}\cdot \dfrac{900}{87}}=\ \dfrac{10875}{10}}\cdot \dfrac{1}{87}}=\ \dfrac{125}{10}}=\ \dfrac{25}{2}} \dfrac{\dfrac{1625}{1000}-\dfrac{375}{900}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1625\cdot 900-375\cdot 1000}{900000}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1462500-375000}{900000}}{\dfrac{87}{900}}\\ \\ \\ \\
\dfrac{\dfrac{1087500}{900000}}{\dfrac{87}{900}}=\ \dfrac{\dfrac{10875}{9000}}{\dfrac{87}{900}}=\ \dfrac{10875}{9000}}\cdot \dfrac{900}{87}}=\ \dfrac{10875}{10}}\cdot \dfrac{1}{87}}=\ \dfrac{125}{10}}=\ \dfrac{25}{2}}](https://tex.z-dn.net/?f=%5Cdfrac%7B%5Cdfrac%7B1625%7D%7B1000%7D-%5Cdfrac%7B375%7D%7B900%7D%7D%7B%5Cdfrac%7B87%7D%7B900%7D%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C%0A%5Cdfrac%7B%5Cdfrac%7B1625%5Ccdot+900-375%5Ccdot+1000%7D%7B900000%7D%7D%7B%5Cdfrac%7B87%7D%7B900%7D%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C%0A%5Cdfrac%7B%5Cdfrac%7B1462500-375000%7D%7B900000%7D%7D%7B%5Cdfrac%7B87%7D%7B900%7D%7D%5C%5C+%5C%5C+%5C%5C+%5C%5C%0A%5Cdfrac%7B%5Cdfrac%7B1087500%7D%7B900000%7D%7D%7B%5Cdfrac%7B87%7D%7B900%7D%7D%3D%5C+%5Cdfrac%7B%5Cdfrac%7B10875%7D%7B9000%7D%7D%7B%5Cdfrac%7B87%7D%7B900%7D%7D%3D%5C+%5Cdfrac%7B10875%7D%7B9000%7D%7D%5Ccdot+%5Cdfrac%7B900%7D%7B87%7D%7D%3D%5C+%5Cdfrac%7B10875%7D%7B10%7D%7D%5Ccdot+%5Cdfrac%7B1%7D%7B87%7D%7D%3D%5C+%5Cdfrac%7B125%7D%7B10%7D%7D%3D%5C+%5Cdfrac%7B25%7D%7B2%7D%7D)
Concluindo:
![x=\dfrac{400}{\dfrac{25}{2}}=\ 400\cdot \dfrac{2}{25}}=\ 16\cdot 2=\ 32 x=\dfrac{400}{\dfrac{25}{2}}=\ 400\cdot \dfrac{2}{25}}=\ 16\cdot 2=\ 32](https://tex.z-dn.net/?f=x%3D%5Cdfrac%7B400%7D%7B%5Cdfrac%7B25%7D%7B2%7D%7D%3D%5C+400%5Ccdot+%5Cdfrac%7B2%7D%7B25%7D%7D%3D%5C+16%5Ccdot+2%3D%5C+32)
Denominador:
Vamos resolver primeiro o NUMERADOR:
Para resolver de forma mais fácil, primeiramente transformamos as dízimas em frações (frações geratriz da dízima):
Para 4,666...
Para 3,625
Andamos com a vírgula para a direita e dividimos por 1 seguido de tantos zeros quantas casas andamos:
Para 0,15625
Mesmo procedimento anterior:
Para 0,1041666...
Mesmo procedimento que usamos para o primeiro número, com a diferença que vamos multiplicando o número inicial por 10, 100, 1000, 10000, 100000, até chegarmos à dízima. Então subtraímos a última pela penúltima multiplicação:
Agora temos:
Agora vamos resolver o DENOMINADOR:
Para 1,625
Para 0,41666...
Para 0,09666...
Agora temos:
Concluindo:
joicemarques15:
Não entendi o 125/10 no processo final do denominador ..
Perguntas interessantes