Matemática, perguntado por marcosbazzoozhji2, 1 ano atrás

Alguém pode me ajudar com a questão abaixo?

Sejam f(x) e g(x) ∈ ℝ não constantes e n e m inteiros positivos. Mostre que y^m − f(x) divide y^n − g(x) em ℝ[x,y] se, e somente se, m divide n e g(x) = f(x) ^ (n/m).

Obrigado.

Soluções para a tarefa

Respondido por uduwanageozjiw5
0
Escrevendo n = qm + r, com 0 = r < m, e


y^n - g(x) = y^r(y^qm - f(x)^q) + f(x)^q . y^r - g(x);


usando o fato de que y^qm - f(x)^q e divisível por y^m - f(x), concluímos que,
se y^n - g(x) e divisível por y^m - f(x), f(x)^q . y^r - g(x) também é 


Como o grau em y de f(x)^q . y^r - g(x), que é r, e menor que m, que e o grau em y de y^m - f(x), devemos ter f(x)^q . y^r - g(x) identicamente nulo, ou seja, r = 0 e g(x) = f(x)^q = f(x)^n/m
Perguntas interessantes