Matemática, perguntado por rafa0208, 1 ano atrás

Alguém pode me ajudar a responder as questões da imagem ?

Anexos:

Soluções para a tarefa

Respondido por CyberKirito
0

G)

 \sqrt{ {5}^{x - 1}}. \sqrt[x]{ {5}^{4x - 10} }   - \sqrt[2x]{ {5}^{3x - 1} }  = 0

 {5}^{ \frac{x - 1}{2} } . {5}^{ \frac{4x - 10}{x}}  -  {5}^{ \frac{3x - 1}{2x} }  = 0 \\  {5}^{ \frac{x - 1}{2} } . {5}^{ \frac{4x - 10}{x} }  =  {5}^{ \frac{3x - 1}{2x} }

 {5}^{ \frac{x(x - 1) + 2(4x - 10)}{2x}} = {5}^{ \frac{3x - 1}{2x} }

 \frac{x(x - 1) + 2(4x - 10)}{2x} =  \frac{3x - 1}{2x}

x(x - 1) + 2(4x - 10) = 3x - 1 \\  {x}^{2}  - x + 8x - 20 - 3x + 1 = 0 \\  {x}^{2}  + 4x - 19 = 0

∆=16+76=92

x=(-4±2√23)/2

x'=(-4+2√23)/2=2(-2+√23)/2

x'=-2+√23

H)

 { ({2}^{x}) }^{x + 4}  = 32 \\  {2}^{ {x}^{2} + 4x}  =  {2}^{5}  \\  {x}^{2} + 4x = 5 \\  {x}^{2} + 4x - 5 = 0

 {x}^{2}  - x + 5x - 5 = 0 \\ x(x - 1) + 5(x - 1) = 0 \\ (x - 1)(x + 5) = 0

x - 1 = 0 \\ x = 1 \\ x + 5 = 0 \\ x =  - 5

i)

 {2}^{3x - 1}. {4}^{2x + 3} =  {8}^{3x}  \\  {2}^{3x - 1}. {2}^{4x + 6}  =  {2}^{9} \\  {2}^{7x + 5}  =  {2}^{9}  \\ 7x + 5 = 9

7x =9 - 5 \\ 7x = 4 \\x =  \frac{4}{7}

2)

 {8}^{y + 1}  =  {2}^{x}  \\  {2}^{3y + 3}  =  {2}^{x }  \\ x = 3y + 3

 {9}^{y} =  {3}^{x - 9}  \\  {3}^{2y} =  {3}^{x - 9}  \\ 2y = x - 9 \\ x = 2y + 9

3y + 3 = 2y + 9 \\ 3y - 2y = 9 - 3 \\ y = 6

x = 2y + 9 \\ x = 2.6 + 9 \\ x = 12 + 9 \\ x = 21

x + y = 21 + 6 = 27

3)

 {2}^{2x - 3}  - 3. {2}^{x - 1} + 4 = 0 \\  \frac{ { ({2}^{x}) }^{2} }{ {2}^{3} }  - 3. \frac{ {2}^{x} }{2} + 4 = 0

Faça \:  {2}^{x}  = k

 \frac{ {k}^{2} }{8}  - 3. \frac{k}{2} + 4 = 0 \times (8) \\  {k}^{2}   - 12k + 32 = 0

 {k}^{2}  - 4k - 8k + 32 = 0 \\ k(k - 4) - 8(k - 4) = 0 \\ (k - 4)(k - 8) = 0

 k - 4 = 0 \\ k = 4 \\ k - 8 = 0 \\ k = 8

 {2}^{x} = k \\  {2}^{x}= 4 \\  {2}^{x} =  {2}^{2}   \\ x = 2

 {2}^{x} = k \\  {2}^{x}  = 8 \\  {2}^{x}  =  {2}^{3}  \\ x = 3

4)

a)

 {3}^{x + 2}  +  {3}^{x - 1}  = 84 \\  {3}^{x} . {3}^{2} +  {3}^{x}. {3}^{ - 1} = 84 \\  {3}^{x}  (9 +  \frac{1}{3} ) = 84 \\  {3}^{x} . \frac{28}{3}  = 84

 {3}^{x}  =  \frac{3}{28} .84 \\  {3}^{x}  = 9 \\  {3}^{x}  =  {3}^{2}  \\ x = 2

b)

 {64}^{x}  = 256 \\  {2}^{6x}  =  {2}^{8}  \\ 6x = 8 \\x =  \frac{8}{6}   =  \frac{4}{3}

c)

 {2}^{x + 1}  +  {2}^{x - 1}  = 20 \\  {2}^{x} .2 +  {2}^{x} . {2}^{ - 1}  = 20 \\  {2}^{x}(2 +  {2}^{ - 1} ) = 20 \\  {2}^{x}(2 +  \frac{1}{2}) = 20

 {2}^{x} . \frac{5}{2} = 20 \\  {2}^{x}  = 20. \frac{2}{5}  \\  {2}^{x} = 8 \\  {2}^{x}  =  {2}^{3}  \\ x = 3

d)

 {3}^{x + 1}  -  {3}^{x + 2}  =  - 54 \\  {3}^{x} .3 -  {3}^{x} . {3}^{2}  =  - 54 \\  {3}^{x}(3 - 9) =  - 54 \\  {3}^{x} .( - 6) =  - 54

 {3}^{x}  =  \frac{ - 54}{ - 6}  \\  {3}^{x}  = 9 \\  {3}^{x}  =  {3}^{2}  \\ x = 2

e)

 {2}^{x + 1} +  {2}^{1 - x} - 5 = 0

 {2}^{x}.2 + 2.  { ({2}^{x}) }^{ - 1}  - 5 = 0 \\  Faça \:  {2}^{x}  = y

2y +  \frac{2}{y}  - 5 = 0 \times y \\ 2 {y}^{2} + 2 - 5y = 0 \\ 2 {y}^{2} - 5y + 2 = 0

2 {y}^{2}  -4 y - y + 2 = 0 \\ 2y(y - 2) - 1(y - 2) = 0 \\ (y - 2)(2y - 1) = 0

y - 2 = 0 \\ y = 2 \\ 2y - 1 = 0 \\ 2y = 1 \\ y =  \frac{1}{2}

 {2}^{x} = y \\  {2}^{x}  = 2 \\ x = 1

 {2}^{x} = y \\  {2}^{x} =  \frac{1}{2}  \\  {2}^{x}  =  {2}^{ - 1}  \\ x =  - 1

S={-1,1}

Perguntas interessantes