Matemática, perguntado por MarcelaLima124, 1 ano atrás

alguem para me explicar passo a passo?

Anexos:

Soluções para a tarefa

Respondido por vanderjagomes
1
x + 8y = 180º

x + 3y + 90º = 180º  →  x + 3y = 180º - 90º  →  x + 3y = 90º

x + 8y = 180º
-
x + 3y = 90º
-------------------
    5y = 90º

y = 90º/5  →  y =  18º

x + 8y = 180º

x + 8(18) = 180º

x = 180º - 144º

x = 36º   Alternativa  C) 36

vanderjagomes: Valeu!
Respondido por CapitaoJack
1
Vamos lá... Só tomei a iniciativa de escrever duas coisinhas na imagem da questão. Primeiramente, chamei aquele ângulo no vértice P de alfa (α) - em amarelo. Em segundo lugar, completei o desenho com outra indicação de ângulo reto (em verde). Se você tiver um triângulo com PELO MENOS dois lados congruentes (de mesma medida), esse triângulo será designado isósceles. Uma coisa interessante sobre o triângulo isósceles é que ÂNGULOS OPOSTOS A LADOS CONGRUENTES TÊM A MESMA MEDIDA. Qual o ângulo oposto ao lado MP? Isso, o ângulo 4y (3y + 3y). Qual o ângulo oposto ao lado MN? Exatamente: o ângulo alfa (em amarelo). Como os dois lados têm a mesma medida, esses dois ângulos devem ter, necessariamente, o mesmo valor. Disso, vem que

4y = α

Sendo assim, no lugar de α podemos escrever 4y. Agora perceba uma coisa: quanto vale a soma dos ângulos internos de qualquer triângulo? Se sua resposta foi 180º, parabéns. Isso significa que x + 4y + 4y = 180º (ou x + 8y = 180º)...

Ora, se você considerar o triângulo MNR, poderá afirmar que x + 3y + 90º = 180º, pois como é um triângulo, a soma dos ângulos internos devem dar 180º. E agora? O que faremos? Até agora temos:

x + 8y = 180º
e
x + 3y + 90º = 180º

Se as duas equações apresentam o mesmo valor, poderemos igualá-las:

x + 8y = x + 3y + 90º
8y - 3y = 90º
5y = 90º
y = 90º/5
y = 18º

Ora, se y = 18º, já "matamos" a questão! Pois basta substituir no triângulo maior:

4.y + 4.y + x = 180º
4.18 + 4.18 + x = 180º
72 + 72 + x = 180º
144 + x = 180º
x = 180º - 144º
x = 36º


Ufa! 
Anexos:

MarcelaLima124: Muito obrigada mesmo, agradeço do fundo do coração você ter perdido um pouquinho do seu tempo me explicando!
CapitaoJack: Espero que dê pra entender direitinho!
Perguntas interessantes