Matemática, perguntado por Usuário anônimo, 1 ano atrás

Alguém me helpa:
(Fuvest – SP) a) Dar uma equação da bissetriz do ângulo agudo entre a reta de equação 4x-3y=4 e o eixo dos x;

b) Determinar a circunferência inscrita no triângulo de vértices (1,0), (4,0) e (4,4).

Soluções para a tarefa

Respondido por Juninhozinhoinho
5

a) Encontrar o ângulo "a" alfa, colocar na fórmula de soma de tangentes, encontrar o ângulo equivalente à bissetriz(metade) e aplicar na fórmula fundamental da reta:

4x-3y=4

y = (4/3)(x-1)    <-vemos aqui em (x-1), que 1 é a raiz da equação, pela lei de formação.

2a=2alfa=4/3

simplificando para encontrar o ângulo da bissetriz que vai ser "a"

tg(2a) =4/3

tg(a+a)=(tga + tga)/(1-tga*tga)=4/3

4tg²a + 6tga - 4 = 0

2tg²a + 3tga - 2 = 0

tga = 1/2    <-ângulo da bissetriz

sabendo que ele toca em x no ponto (1, 0), como falei lá em cima, então:

(y-0) = (1/2)(x-1)

x - 2y - 1 = 0   <- equação da reta b: bissetriz

----------------------------------------------------------------------------------------------------------------

b) 1º passo: desenhar o triângulo com os vértices (1,0), (4,0) e (4,4) no plano cartesiano

   2º passo: encontrar a hipotenusa e perceber que se trata do famoso triângulo de lados = 3, 4 e 5.

  3º passo: usar o teorema de poncelet para encontrar o raio da circunferência inscrita:  3 + 4 = 5 + 2r   ->  raio = 1

  4ºpasso: aqui é preciso noção das relações de congruência de um triângulo com uma circunferência inscrita: o encontro das três alturas do triângulo é exatamente o centro da circunferência, isso cria 3 pares de lados congruentes entre si. Usamos isso para encontrar a distância entre o eixo y e o ponto da altura do lado "3" para encontrar o valor de x no centro C(x, y).

Como não posso desenhar no momento, fiz o passo a passo pra você: isolei o valor de x(distancia entre origem e reta perpendicular ao lado "3") e cheguei a seguinte equação: (3-x) + (4-x) = 5

x = 1,

distância = 4 - 1(no eixo x, perceberá se fizer no plano cartesiano) = 3 <- valor de x no centro C(x, y)

agora só falta 1, que é o valor do próprio raio, já que a base do triângulo é o próprio eixo x, então temos:

r = 1

C(x, y) = C(3, 1)

basta colocar na equação fundamental da circunferência:

(x - 3)² + (y - 1)² = 1

------------------------------------------------------------------------------------------------------------

Espero que tenha entendido, não é uma questão fácil de explicar, mas se você tiver uma afinidade com a geometria analítica, certamente entenderá!

:-)




Juninhozinhoinho: tmj, irmão
Perguntas interessantes