alguem me explica como se faz uma equação do primeiro grau
Soluções para a tarefa
Some todos os termos que tenham a variável. Some todos os termos constantes ou independentes.
O valor de x encontrado é a solução
Resposta:Os quatro passos da resolução de equações do primeiro grau
Passo 1 – Colocar no primeiro membro todos os termos que possuem incógnita.
Reescreva a equação colocando todos os termos que possuem incógnita no primeiro membro. Para tanto, utilize a seguinte regra: Trocou de membro, trocou de sinal. Observe o exemplo:
7x + 80 = 4x – 7
O termo 4x está no segundo membro e deve ser colocado no primeiro. Assim, troque 4x de membro trocando também seu sinal:
7x + 80 = 4x – 7
7x – 4x + 80 = – 7
Passo 2 – Colocar no segundo membro todos os termos que não possuem incógnita.
Repita o procedimento do passo anterior para transferir termos que não possuem incógnita do primeiro para o segundo membro. No exemplo abaixo (continuação do exemplo anterior), observe que + 80 é um termo que não possui incógnita. Portanto, deve ser colocado no segundo membro. Ao fazer isso, lembre-se da regra: Trocou de membro, trocou de sinal.
7x – 4x + 80 = – 7
7x – 4x = – 7 – 80
Passo 3 – Simplificar as expressões em cada membro.
Para esse passo, basta realizar as operações indicadas na equação. Para tanto, lembre-se de como devem ser realizadas as somas de números inteiros.
7x – 4x = – 7 – 80
3x = – 87
Passo 4 – Isolar a incógnita no primeiro membro.
Em alguns casos, como no exemplo acima, a incógnita aparece sendo multiplicada (ou dividida) por um número qualquer. Para isolar a incógnita no primeiro membro da equação, deve-se considerar a seguinte regra: Caso o número esteja multiplicando a incógnita, passá-lo para o segundo membro dividindo. Caso o número esteja dividindo a incógnita, passá-lo para o segundo membro multiplicando. Por exemplo:
3x = – 87
Observe que a incógnita x está sendo multiplicada por 3. Portanto, 3 deve passar para o segundo membro dividindo. Logo, o quarto passo terá o seguinte resultado:
3x = – 87
x = – 87
3
x = – 29