alguém me ensina a fazer formula baskara
Soluções para a tarefa
Explicação passo-a-passo: O primeiro passo para resolver uma equação usando a fórmula de Bhaskara é identificar os coeficientes da equação. Desta forma, os coeficientes na equação são: a = + 1, b = - 5 e c = + 6. , então a equação terá duas raízes reais e distintas. Vamos agora aplicar a fórmula de Bhaskara para encontrar o valor das raízes.
Contudo, esse método costuma ser dividido em três etapas para facilitar a compreensão por parte dos alunos.
Etapa 1: Calcular discriminante
Discriminante é a expressão presente dentro da raiz na fórmula de Bhaskara. É comumente representado pela letra grega Δ (Delta) e recebe esse nome pelo fato de discriminar os resultados de uma equação da seguinte maneira:
Δ < 0, então a equação não possui resultados reais;
Δ = 0, então a equação possui apenas um resultado real ou possui dois resultados iguais (essas duas afirmações são equivalentes);
Δ > 0, então a equação possui dois resultados distintos reais.
Portanto, para calcular as raízes de uma equação do segundo grau, primeiramente calcule o valor numérico de Δ.
Etapa 2: Substitua discriminante e coeficientes na fórmula de Bhaskarag
Nessa etapa, basta substituir os valores de Δ e dos coeficientes da equação do segundo grau na fórmula acima.
Etapa 3: Calcule as raízes da equação
Para essa última etapa, note na fórmula de Bhaskara que existe um sinal “±”. Esse sinal indica que devem ser realizados dois cálculos. O primeiro para o caso em que o número que o segue seja positivo e o segundo para o caso em que o número que o segue seja negativo.
É comum nomear cada um desses resultados como x' e x'' ou x1 e x2.
realize o primeiro passo.
a = 1, b = 12 e c = – 13
Δ = b2 – 4ac
Δ = 122 – 4·1·(– 13)
Δ = 144 + 52
Δ = 196
Tendo em mãos o valor de Δ, realize o segundo passo:
x = – b ± √Δ
2·a
x = – 12 ± √196
2·1
x = – 12 ± 14
2
Por fim, realize o terceiro passo para encontrar as raízes da equação do segundo grau.
x' = – 12 + 14
2
x' = 2
2
x' = 1
x'' = – 12 – 14
2
x'' = – 26
2
x'' = – 13
Portanto, as raízes da equação x2 + 12x – 13 = 0 são 1 e – 13.
Espero ter lhe ajudado! :)