Matemática, perguntado por XxluhxX, 7 meses atrás

Alguém me ajuda pfvr!!!!! Vou fazer os cálculos aqui também​

Anexos:

Soluções para a tarefa

Respondido por mariapoim10
1

Resposta:

Explicação passo-a-passo:

1 -  3^3-n + 3.3^2-n- 9.3^1-n/ 9.3^2-n

Temos multiplicaçao entre termos iguais no numerador e denominador assim podemos cortar o 3^2-n no numerador e no denominadore. Podemos cortar 9 nos dois tambem.

Assim ficamos com 3^3-n + 3 - 3^1-n

2 - 8. [1+(-1)] +4 . 1/4

     8. [1-1] + 4/4

     8. 0 + 1 = 0+ 1 = 1

3 - Fatoramos os numeros

A) √2^2.2.5^2. +  √2^2.2^2.2^2.2. - √2^2.2^2.2.5^2 = todos elevados a dois tiramos da raiz.

2.5√2 + 2.2.2√2 - 2.2.5√2 =

10√2 + 8√2 - 20√2 =

18√2 - 20√2 =

-2√2

B) ∛2³.2 + ∛5³.2 + ∛3³.2 =

   2∛2 + 5∛2 + 3∛2 =

   = 10∛2

c) \frac{\sqrt[4]{2^{4}.3} }{2} + \frac{\sqrt[4]{3^{4}.3 } }{3} =

   \frac{2\sqrt[4]{3} }{2} + \frac{3\sqrt[4]{3} }{3} =  temos uma multiplicação no numerador então podemos cortar o 2 e 3 no numerador e denominador.

\sqrt[4]{3} + \sqrt[4]{3} = 2\sqrt[4]{3}

4 - fatoramos as bases para ficarem com mesma base.

(2³)³ . (2^{2})^{-4}. 2^{6} / (2^{5})^{-2}  . (2^{7})^{2} =

\frac{2^{9}. 2^{-8}. 2^{6}  }{2^{-10}. 2^{14}  } =   \frac{2^{9+(-8)+6} }{2^{-10+14} } = \frac{2^{7} }{2^{4} } =  2^{7-4}  = 2^{3}

Perguntas interessantes