Matemática, perguntado por castilhosmel3, 7 meses atrás

Alguém me ajuda falta 1 hr para mim entregar

Anexos:

Soluções para a tarefa

Respondido por Usuário anônimo
0

Explicação passo a passo:

1) x² - 5x + 6 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-5) +-\sqrt{(-5)^2 - 4.1.6} }{2.1}

x = \frac{5 +-\sqrt{25 - 24} }{2}

x = \frac{5 +-\sqrt{1} }{2}

x = \frac{5 +-1 }{2}

x' = \frac{5 +1 }{2}

x' = \frac{6 }{2} = 3

x" = \frac{5 -1 }{2}

x" = \frac{4}{2} = 2

2) x² - 8x + 12 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-8) +-\sqrt{(-8)^2 - 4.1.12} }{2.1}

x = \frac{8 +-\sqrt{64 - 48} }{2}

x = \frac{8 +-\sqrt{16} }{2}

x = \frac{8 +-4}{2}

x' = \frac{8 +4}{2}

x' = \frac{12}{2} = 6

x" = \frac{8 -4}{2}

x" = \frac{4}{2} = 2

3) x² + 2x - 8 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-2 +-\sqrt{2^2 - 4.1.(-8)} }{2.1}

x = \frac{-2 +-\sqrt{4 +32} }{2}

x = \frac{-2 +-\sqrt{36} }{2}

x = \frac{-2 +-6 }{2}

x' = \frac{-2 -6 }{2}

x' = \frac{-8 }{2} = -4

x" = \frac{-2 +6 }{2}

x" = \frac{4 }{2} = 2

4) x² - 5x + 8 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-5) +-\sqrt{(-5)^2 - 4.1.8} }{2.1}

x = \frac{5 +-\sqrt{25 - 32} }{2}

x = \frac{5 +-\sqrt{-7} }{2}

x =  não existe em reais

5) 2x² - 8x + 8 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-8) +-\sqrt{(-8)^2 - 4.2.8} }{2.2}

x = \frac{8 +-\sqrt{64 - 64} }{4}

x = \frac{8 +-\sqrt{0} }{4}

x = \frac{8 }{4} = 2

6) x² - 4x - 5 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-4) +-\sqrt{(-4)^2 - 4.1.(-5)} }{2.1}

x = \frac{4 +-\sqrt{16 + 20} }{2}

x = \frac{4 +-\sqrt{36} }{2}

x = \frac{4 +-6}{2}

x' = \frac{4 +6}{2}

x' = \frac{10}{2} = 5

x" = \frac{4 -6}{2}

x" = \frac{-2}{2} = -1

7) -x² + x + 12 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-1 +-\sqrt{1^2 - 4.(-1).12} }{2.(-1)}

x = \frac{-1 +-\sqrt{1 +48} }{-2}

x = \frac{-1 +-\sqrt{49} }{-2}

x = \frac{-1 +-7}{-2}

x' = \frac{-1 +7}{-2}

x' = \frac{6}{-2} = -3

x" = \frac{-1 -7}{-2}

x" = \frac{-8}{-2} = 4

8) -x² + 6x - 5 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-6 +-\sqrt{6^2 - 4.(-1).(-5)} }{2.(-1)}

x = \frac{-6 +-\sqrt{36 - 20} }{-2}

x = \frac{-6 +-\sqrt{16} }{-2}

x = \frac{-6 +-4}{-2}

x' = \frac{-6 +4}{-2}

x' = \frac{-2}{-2} = 1

x" = \frac{-6 -4}{-2}

x" = \frac{-10}{-2} = 5

9) 6x² + x - 1 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-1 +-\sqrt{1^2 - 4.6.(-1)} }{2.6}

x = \frac{-1 +-\sqrt{1 +24} }{12}

x = \frac{-1 +-\sqrt{25} }{12}

x = \frac{-1 +-5}{12}

x' = \frac{-1 +5}{12}

x' = \frac{4}{12} = \frac{2}{6} =\frac{1}{3}

x" = \frac{-1 -5}{12} = \frac{-6}{12} = \frac{-1}{2}

10) 3x² - 7x + 2 = 0

x = \frac{-b +-\sqrt{b^2 - 4ac} }{2a}

x = \frac{-(-7) +-\sqrt{(-7)^2 - 4.3.2} }{2.3}

x = \frac{7 +-\sqrt{49 - 24} }{6}

x = \frac{7 +-\sqrt{25} }{6}

x = \frac{7 +-5}{6}

x' = \frac{7 +5}{6} = \frac{12}{6}=2

x" = \frac{7 -5}{6}=\frac{2}{6} =\frac{1}{3}

Bons estudos!

Anexos:
Perguntas interessantes