Matemática, perguntado por meajudaagora2000, 9 meses atrás

Alguém consegui resolver:
2 sin^{2} x - 3 sin x + 1 = 0

HELP!!!!!

Soluções para a tarefa

Respondido por elizeugatao
0

2\text{sen}^2(\text x) - 3\text{sen(x)}+1 = 0

é uma equação do 2º grau na variável sen(x). Usando bhaskpara temos :

\displaystyle \text{sen(x)} = \frac{-(-3)\pm\sqrt{(-3)^2-4.2.1}}{2.2} \to \text{sen(x)} = \frac{3\pm\sqrt{9-8}}{4}

\displaystyle \text{sen(x)} = \frac{3\pm\sqrt{9-8}}{4} \to \text{sen(x)} = \frac{3\pm1}{4}

então :

\displaystyle \text{sen(x)} =\frac{3+1}{4} \to \boxed{\text{sen(x)} = 1}

\displaystyle \text{sen(x)} = 1 \to \boxed{\text x = \frac{\pi}{2} + 2.k.\pi} \ , \boxed{(\text k \in \mathbb{Z})}

ou

\displaystyle \text{sen(x)} =\frac{3-1}{4} \to \boxed{\text{sen(x)} = \frac{1}{2}}

\displaystyle \text{sen(x)} = \frac{1}{2} \to \boxed{\text x = \frac{\pi}{6} +2.\text k. \pi} \ , \ \boxed{(\text k \in \mathbb{Z})}

OU

\displaystyle \text{sen(x)} = \frac{1}{2} \to \boxed{\text x = \frac{5.\pi}{6} +2.\text k. \pi} \ , \ \boxed{(\text k \in \mathbb{Z})}

Soluções :

\displaystyle\boxed{\text x = \frac{\pi}{2} + 2.\text k.\pi} \ ; \ \boxed{\text x = \frac{\pi}{6} + 2.\text k.\pi} \ ; \ \boxed{\text x = \frac{5\pi}{6} + 2.\text k.\pi}}, Com \boxed{\text k \in \mathbb{Z}}

Perguntas interessantes