Matemática, perguntado por mmartinsjr, 1 ano atrás

Alguém consegue me ajudar a solucionar esse problema(MATRIZ)??? 

Anexos:

Soluções para a tarefa

Respondido por Celio
1
Olá, Mmartinsjr,

\frac34A+\frac75B+\frac43C+2D=E\Rightarrow\\\\ \frac34\begin{bmatrix}
4 &12 \\ 
0 &8 
\end{bmatrix}+\frac75\begin{bmatrix}
x & 5\\ 
z & y
\end{bmatrix}+\frac43\begin{bmatrix}
6z &15 \\ 
\frac34x & 3x
\end{bmatrix}+2\begin{bmatrix}
y &0 \\ 
4y &3z 
\end{bmatrix}=\begin{bmatrix}
6 &36 \\ 
1 & 8
\end{bmatrix}\Rightarrow

\begin{bmatrix}
3 & 9\\ 
0 & 6
\end{bmatrix}+\begin{bmatrix}
\frac75x &7 \\\\ 
\frac75z & \frac75y
\end{bmatrix}+\begin{bmatrix}
8z & 20\\ 
x & 4x
\end{bmatrix}+\begin{bmatrix}
2y & 0\\ 
8y & 6z
\end{bmatrix}=\begin{bmatrix}
6 &36 \\ 
1 & 8
\end{bmatrix}\Rightarrow

\begin{bmatrix}
3+\frac75x+8z+2y & 9+7+20+0\\ 
0+\frac75z+x+8y &6+\frac75y+4x+6z 
\end{bmatrix}=\begin{bmatrix}
6 &36 \\ 
1 & 8
\end{bmatrix}\Rightarrow

\left\{\begin{matrix}
3+\frac75x+8z+2y=6 \\36=36\\ 
\frac75z+x+8y=1 \\6+\frac75y+4x+6z =8
\end{matrix}\right\,\,\,\,\,\,\Rightarrow

\left\{\begin{matrix}
\frac75x+2y+8z=3 \\\\
x+8y+\frac75z=1 \\\\4x+\frac75y+6z =2
\end{matrix}\right\,\,\,\,\,\,\times5\Rightarrow

\left\{\begin{matrix} 7x+10y+40z=15 \\\\ 5x+40y+7z=5 \\\\20x+7y+30z =10 \end{matrix}\right

\left\{\begin{matrix} 7x+10y+40z=15 \\\\ -20x-160y-28z=-20 \\\\20x+7y+30z =10 \end{matrix}\right\\\\\\
\left\{\begin{matrix} 7x+10y+40z=15 \\\\ -20x-160y-28z=-20 \\\\-153y+2z =-10 \end{matrix}\right

\left\{\begin{matrix} 7x+10y+40z=15 \\\\ -20x-160y-28z=-20 \\\\-2142y+28z =-140 \end{matrix}\right\,\,\,\,\Rightarrow\\\\\\
\left\{\begin{matrix} 7x+10y+40z=15 \\\\ -20x-160y-28z=-20 \\\\-2302y=-160 \end{matrix}\right\\\\

etc.

Deve-se resolver o sistema linear acima, para concluir a solução.
Perguntas interessantes