ALGUEM AJUDA RAPIDO PFV ❤ 15 pontos
Anexos:
Soluções para a tarefa
Respondido por
1
Bboechat,
Os ângulos BAD e BCD são inscritos e tem por corda o arco BD. Então, eles têm a mesma medida:
BAD = BCD = 40º
Como CD é bissetriz do ângulo ACB, o ângulo ACD também mede 40º e, então o ângulo ACB mede:
ACB = ACD + BCD
ACB = 40º + 40º
ACB = 80º
Como o triângulo ABC é isósceles, pois, de acordo com o enunciado as cordas AB e AC têm o mesmo comprimento, os ângulos da base deste triângulo são congruentes:
ABC = ACB = 80º
A soma dos ângulos internos do triângulo ABC é igual a 180º:
ABC + ACB + α = 180º
Como conhecemos a medida dos ângulos ABC e ACB:
80º + 80º + α = 180º
Então,
α = 180º - 80º - 80º
α = 20º
R.: O ângulo BAC (α) mede 20º.
Os ângulos BAD e BCD são inscritos e tem por corda o arco BD. Então, eles têm a mesma medida:
BAD = BCD = 40º
Como CD é bissetriz do ângulo ACB, o ângulo ACD também mede 40º e, então o ângulo ACB mede:
ACB = ACD + BCD
ACB = 40º + 40º
ACB = 80º
Como o triângulo ABC é isósceles, pois, de acordo com o enunciado as cordas AB e AC têm o mesmo comprimento, os ângulos da base deste triângulo são congruentes:
ABC = ACB = 80º
A soma dos ângulos internos do triângulo ABC é igual a 180º:
ABC + ACB + α = 180º
Como conhecemos a medida dos ângulos ABC e ACB:
80º + 80º + α = 180º
Então,
α = 180º - 80º - 80º
α = 20º
R.: O ângulo BAC (α) mede 20º.
bboechat:
Ajudou muito. Muito obrigada!
Perguntas interessantes
Química,
9 meses atrás
Química,
9 meses atrás
Matemática,
9 meses atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Pedagogia,
1 ano atrás
Artes,
1 ano atrás