Ajudem pfvrrrrrrrrr
As partículas P1 e P2 vistas a figura, deslizam sobre o plano inclinado, a partir do repouso, começado o movimento de ambas em um mesmo instante nas posições em que elas estão desenhadas. Isto posto, as partículas chegam simultaneamente ao ponto A. Seja μ2 o coeficiente de atrito entre a partícula P2 e o plano e μ1 o coeficiente de atrito entre o plano e a partícula P1 . Determine 120μ1
Anexos:
Soluções para a tarefa
Respondido por
1
Oi!
Temos as retas:
y = 3x+7
3x-y+7 = 0 (r)
y = 8x+2
8x-y+2 = 0 (s)
A intersecção dessas retas se dará fazendo o sistema delas. Logo:
{3x-y = -7 (I)
{8x-y = -2 (II)
Multiplicando (I) por (-1), vem:
{-3x+y = 7 (III)
{8x-y = -2 (II)
Somando as duas, teremos:
5x = 5
x = 1
Substituindo o valor de x em (II):
8x-y = -2
8.1-y = -2 -> Resolvendo:
8-y = -2
-y = -2-8
-y = -10
y = 10
x+y = 10+1
= 11
--> agora, vamos utilizar a seguinte fórmula
v² = vo² + 2a. ΔS
0 = 5² + 2.a . 10
-25 = 20a
a = -25/20
a = -1,25m/s²
V = Vo + at
0 = 5 -1,25.t
t = 5/1,25
t = 4s
Fr = -Fat (já que o movimento ocorre por inércia)
ma = - N.μ
ma = - mg.μ
-1,25 = -10μ
μ = 0,125 --> coeficiente de atrito
Perguntas interessantes
História,
9 meses atrás
Sociologia,
9 meses atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás