Matemática, perguntado por izissantospd3lgd, 11 meses atrás

ajude a responder a 8 questão .

se der também essa > Obtenha a equação da reta r que passa pelos pontos A (3, 2) e B(0, 0)

Anexos:

Soluções para a tarefa

Respondido por Paulloh1
0
Olá!!

Resolução!!

Vou considerar essa questão 8 com se fosse a 1 questão OK!

1°)

A ( 4. 1 ) e B ( 1, a ) e m = - 4/3

Basta aplicar na formula do coeficiente angular. → " m = y2 - y1/x2 - x1 "

Vamos lá!

Lembrando que :

A ( 4. 1 ), B ( 1, a ) e m = - 4/3

m = y2 - y1/x2 - x1
- 4/3 = a - 1/1 - 4
- 4/3 = a - 1/ - 3

Multiplicando a cruzada .

3 • ( a - 1 ) = - 4 • ( - 3 )
3a - 3 = 12
3a = 12 + 3
3a = 15
a = 15/3
a = 5

Logo, a = 5

Verificando

- 4/3 = a - 1/ - 3
- 4/3 = 5 - 1/ - 3
- 4/3 = 4/( - 3 )
- 4/3 = - 4/3 , OK!

2)

A ( 3, 2 ) e B ( 0, 0 )

Primeiro calcular o coeficiente angular

m = y2 - y1/x2 - x1
m = 0 - 2/0 - 3
m = - 2/( - 3 ) • ( - 1 )
m = 2/3

Agora basta pegar um dos pontos e aplicar na fórmula pra calcular a equação da reta → " y - yo = m ( x - xo ) " , pode pegar qualquer um dos pontos A ou B , porque os dois pontos são da mesma reta.

Pegamos o ponto A

A ( 3, 2 ) e m = 2/3

y - yo = m ( x - xo )
y - 2 = 2/3 ( x - 3 )
y - 2 = 2x/3 - 6/3
y = 2x/3 - 2 + 2
y = 2x/3 → Equação reduzida da reat
2x/3 = y
2x/3 - y = 0 → Equação geral da reta

Agora vamos pegar o ponto B e colocar na formula só pra ver se da mesma Equação mesmo.

B ( 0, 0 ) e m = 2/3

y - yo = m ( x - xo )
y - 0 = 2/3 ( x - 0 )
y - 0 = 2x/3 - 0
y = 2x/3 - 0 + 0
y = 2x/3
2x/3 = y
2x/3 - y = 0 , OK!

Veja, como deu o mesmo resultado, interessante neh ? rsrs..

Espero ter ajudado!!

Paulloh1: de nada ^_^
izissantospd3lgd: Você me ajudou muito!!!
Paulloh1: ^_^
Paulloh1: e a 9°) ?
izissantospd3lgd: Tá respondida
izissantospd3lgd: mas se quiser responder pra me conferir eu aceito
Paulloh1: Poder ser , rsrs...
Paulloh1: ainda ta copiando ? rsrs...
izissantospd3lgd: ocupada mando já
Paulloh1: kkkkk,, ta ok
Perguntas interessantes