Ajudaaa ...
,...........
.
Soluções para a tarefa
Resposta:
Explicação passo-a-passo:
a) f(x) = x²
f'(x) = lim f(x + Δx) - f(x)/Δx
Δx⇒0
lim (x+Δx)² - x² /Δx
Δx⇒0
lim x² +2x.Δx +(Δx)² - x² /Δx
Δx⇒0
lim 2xΔx +( Δx)²/Δx
Δx⇒0
lim Δx(2x + Δx / Δx
Δx⇒0
lim 2x + Δx = 2x + 0 = 2x, portanto
Δx⇒0
f(x) = x² ⇒f'(x) = 2x
b) f'(x) = lim f( x + Δx) - f(x) / Δx
Δx⇒0
lim 2(x +delta x) + 1 - [2.x + 1]/delta x
Δ⇒0
lim 2x + 2Δx + 1 - 2x -1/Δx
Δx⇒0
lim 2Δx/Δx = 2
Δx⇒0
portanto, f(x) = 2x +1 ⇒ f'(x) = 2
Resposta:
Explicação passo-a-passo:
a) f(x) = x²
f'(x) = lim f(x + Δx) - f(x)/Δx
Δx⇒0
lim (x+Δx)² - x² /Δx
Δx⇒0
lim x² +2x.Δx +(Δx)² - x² /Δx
Δx⇒0
lim 2xΔx +( Δx)²/Δx
Δx⇒0
lim Δx(2x + Δx / Δx
Δx⇒0
lim 2x + Δx = 2x + 0 = 2x, portanto
Δx⇒0
f(x) = x² ⇒f'(x) = 2x
b) f'(x) = lim f( x + Δx) - f(x) / Δx
Δx⇒0
lim 2(x +delta x) + 1 - [2.x + 1]/delta x
Δ⇒0
lim 2x + 2Δx + 1 - 2x -1/Δx
Δx⇒0
lim 2Δx/Δx = 2
Δx⇒0
portanto, f(x) = 2x +1 ⇒ f'(x) = 2