Ajuda? Trinômio de segundo grau.
Anexos:
Soluções para a tarefa
Respondido por
3
A fatoração do trinômio do tipo x2 + Sx + P é o 4° caso de fatoração que vem logo após o trinômio do quadrado perfeito, pois também é utilizado quando a expressão algébrica é um trinômio.
Quando é necessário fatorar uma expressão algébrica e essa é um trinômio (três monômios), e verificamos que esse não forma um trinômio do quadrado perfeito, devemos então utilizar a fatoração do tipo x2 + Sx + P.
Quando é necessário fatorar uma expressão algébrica e essa é um trinômio (três monômios), e verificamos que esse não forma um trinômio do quadrado perfeito, devemos então utilizar a fatoração do tipo x2 + Sx + P.
GuilhermeMasck13:
Obrigado. Mas qual par de números iguais dá 35 ou 2? S=? P=?
Respondido por
0
Resposta:A fatoração do trinômio do tipo x2 + Sx + P é o 4° caso de fatoração que vem logo após o trinômio do quadrado perfeito, pois também é utilizado quando a expressão algébrica é um trinômio.
Quando é necessário fatorar uma expressão algébrica e essa é um trinômio (três monômios), e verificamos que esse não forma um trinômio do quadrado perfeito, devemos então utilizar a fatoração do tipo x2 + Sx + P.
Dada a expressão algébrica x2 + 12x + 20, sabemos que é um trinômio, mas os seus dois membros das extremidades não estão elevados ao quadrado, assim descarta a possibilidade de ser quadrado perfeito. Então, o único caso de fatoração que podemos utilizar para fatorar essa expressão algébrica é x2 + Sx + P.
Explicação passo-a-passo:
Perguntas interessantes