AJUDA FAZER ISSO POR FAVOR !!
A) LOGx-3 9=2
B) LOG4 ( 2x+10 )
Soluções para a tarefa
Respondido por
2
a)

b)
No item b, o que precisamos é encontrar o valor de x para que o logaritmo exista.
Uma das condições de existência é que o logaritmando seja maior do que zero.
Então, temos:

Espero ter ajudado.
b)
No item b, o que precisamos é encontrar o valor de x para que o logaritmo exista.
Uma das condições de existência é que o logaritmando seja maior do que zero.
Então, temos:
Espero ter ajudado.
jctiraduvidas:
Já está em forma de equação. Equação é uma igualdade.
Perguntas interessantes
Química,
11 meses atrás
História,
11 meses atrás
Português,
11 meses atrás
Matemática,
1 ano atrás
Saúde,
1 ano atrás
Matemática,
1 ano atrás