Ajuda aí galera,por favor!!!!!
Resolva as equações:
|x 4 -2|
|x-1 x 1| = |x 3|
|1 x+1 3| | 2 1|
|x 0 1|
|2x x 2| =0
|3 2x x|
Soluções para a tarefa
Respondido por
1
Por Matriz e Determinantes:
[(x . x . 3) + (4 . 1 . 1) + (-2.(x-1) . 1)] - [(-2 . x . 1) + (x . 1.(x + 1)) + (4.(x - 1) . 3)] = (x .1) - (3 . 2)
[(3x²) + (4) + ((-2x + 2) . 1)] - [(-2x + 2) . 1) + (x² + x) + ((4x - 4) . 3)] = (x) - (6)
[3x² + 4 + (-2x + 2)] - [(-2x +2) + x² + x + (12x - 12)] = x -6
[3x² + 4 - 2x + 2] - [-2x + 2 + x² + x + 12x - 12] = x - 6
[3x² - 2x + 4 + 2] - [x² + - 2x + x + 12x + 2 - 10] = x - 6
3x² - 2x + 6 - x² - 11x + 10 = x - 6
3x² - x² - 2x - 11x + 6 + 10 = x - 6
2x² - 13x + 16 - x + 6 = 0
2x² - 13x - x + 16 + 6 =
2x² - 14x + 22 = 0 (dividindo tudo por 2)
x² - 7x + 11 = 0
a = 1
b = - 7
c = 11
Δ = b² - 4.a.c
Δ = (-7)² - 4.(1).(11)
Δ = 49 - 44
Δ = 5
x =
x =
x' =
x'' =
S = {; }
[(x . x . x) + (0 . 2 . 3) + (1 . 2x . x)] - [(1 . x . 3) + (x . 2 . 2x) + (0 . 2x . x)] = 0
[x³ + 0 + 2x²] - [3x + 4x² + 0] = 0
[x³ + 2x²] - [3x + 4x²] = 0
x³ + 2x² - 3x + 4x² =
x³ + 2x² + 4x² - 3x = 0
x³ + 6x² - 3x = 0 (colocando o "x" em evidência):
x . (x² + 6x - 3) = 0 (I)
x =
x = 0
x² + 6x - 3 = (II)
x² + 6x - 3 = 0
Δ = (6)² - 4 . (1) . (-3)
Δ = 36 +12
Δ = 48
S = {-3 + 2√3; -3 - 2√3)
[(x . x . 3) + (4 . 1 . 1) + (-2.(x-1) . 1)] - [(-2 . x . 1) + (x . 1.(x + 1)) + (4.(x - 1) . 3)] = (x .1) - (3 . 2)
[(3x²) + (4) + ((-2x + 2) . 1)] - [(-2x + 2) . 1) + (x² + x) + ((4x - 4) . 3)] = (x) - (6)
[3x² + 4 + (-2x + 2)] - [(-2x +2) + x² + x + (12x - 12)] = x -6
[3x² + 4 - 2x + 2] - [-2x + 2 + x² + x + 12x - 12] = x - 6
[3x² - 2x + 4 + 2] - [x² + - 2x + x + 12x + 2 - 10] = x - 6
3x² - 2x + 6 - x² - 11x + 10 = x - 6
3x² - x² - 2x - 11x + 6 + 10 = x - 6
2x² - 13x + 16 - x + 6 = 0
2x² - 13x - x + 16 + 6 =
2x² - 14x + 22 = 0 (dividindo tudo por 2)
x² - 7x + 11 = 0
a = 1
b = - 7
c = 11
Δ = b² - 4.a.c
Δ = (-7)² - 4.(1).(11)
Δ = 49 - 44
Δ = 5
x =
x =
x' =
x'' =
S = {; }
[(x . x . x) + (0 . 2 . 3) + (1 . 2x . x)] - [(1 . x . 3) + (x . 2 . 2x) + (0 . 2x . x)] = 0
[x³ + 0 + 2x²] - [3x + 4x² + 0] = 0
[x³ + 2x²] - [3x + 4x²] = 0
x³ + 2x² - 3x + 4x² =
x³ + 2x² + 4x² - 3x = 0
x³ + 6x² - 3x = 0 (colocando o "x" em evidência):
x . (x² + 6x - 3) = 0 (I)
x =
x = 0
x² + 6x - 3 = (II)
x² + 6x - 3 = 0
Δ = (6)² - 4 . (1) . (-3)
Δ = 36 +12
Δ = 48
S = {-3 + 2√3; -3 - 2√3)
batt:
Infelizmente está errada,mas obrigado mesmo assim!
Perguntas interessantes
Química,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Português,
1 ano atrás
História,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás