Matemática, perguntado por felipebandeira146, 4 meses atrás

(Adaptado de GOLDBARG; LUNA, 2005) Um fazendeiro está definindo a sua estratégia de plantio para as culturas de trigo, arroz e milho na próxima safra. A produtividade de sua terra para as culturas desejadas é: 0,3 kg/m² para o trigo; 0,4 kg/m² para o arroz; e 0,5 kg/m² para o milho. O lucro de produção é de 11 centavos por kg de trigo, 5 centavos por kg de arroz e 2 centavos por kg de milho.

O fazendeiro dispõe de 400.000m² de área cultivável, sendo que, para atender às demandas de sua própria fazenda, deve ser plantado, no mínimo, 500m² de trigo, 1000m² de arroz e 20.000m² de milho. Ainda, devido à restrição de capacidade de armazenamento dos silos da fazenda, a produção está limitada a 100 toneladas.

Adote a área a ser plantada como a variável de decisão para o modelo matemático deste problema, ou seja, xi= área em m2 a ser plantada da cultura do tipo i = (T-Trigo, A-Arroz, M-Milho). Assim, a função objetivo é:


A) Max f(x)=0,11xt+0,05xa+0,02xm

B) Max f(x)= 0,033xt+0,02xa+0,01xm

C) Max f(x)= 0,3xt+0,4xa+0,5xm

D) Min f(x)= 0,033xt+0,02xa+0,01xm

E) Min f(x)=0,11xt+0,05xa+0,02xm

Soluções para a tarefa

Respondido por philipflag3
31

Resposta:

B)  Max f(x)= 0,033xt+0,02xa+0,01xm

Explicação passo a passo:

Gabarito estácio


felipebandeira146: Está certo
Perguntas interessantes