Matemática, perguntado por marcelo7197, 4 meses atrás

ache \int\dfrac{x^2}{\sqrt{x^2+x+1}}dx \\

Soluções para a tarefa

Respondido por Lukyo
6

Explicação passo a passo:

Calcular a integral indefinida

    \displaystyle\int \frac{x^2}{\sqrt{x^2+x+1}}\,dx

Devemos reescrever a expressão do segundo grau de dentro da raiz quadrada como uma soma ou diferença de quadrados. Para isso, completamos os quadrados aplicando os produtos notáveis. O termo constante 1 foi reescrito como a soma 1/4 + 3/4:

    \displaystyle=\int \frac{x^2}{\sqrt{(x^2+x+\frac{1}{4})+\frac{3}{4}}}\,dx\\\\\\\\=\int \frac{x^2}{\sqrt{(x+\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}}\,dx

Chamemos u = x + 1/2, e a constante a = √3/2. Então,

    x=u-\dfrac{1}{2}\quad\Longrightarrow\quad dx=du

Substituindo, a integral fica

    \displaystyle =\int\frac{(u-\frac{1}{2})^2}{\sqrt{u^2+a^2}}\,du\qquad (i)

Agora, temos que fazer uma substituição trigonométrica. Façamos

   u=a\,\mathrm{tg\,}t\quad\Longrightarrow\quad du=a\sec^2 t\,dt,\qquad ~\mathrm{com~}-\dfrac{\pi}{2}</p><p>Com isso, temos</p><p></p><p>     [tex]\Longrightarrow\quad u^2+a^2=(a\,\mathrm{tg\,}t)^2+a^2\\\\\Longrightarrow\quad u^2+a^2=a^2\,\mathrm{tg^2\,}t+a^2\\\\\Longrightarrow\quad u^2+a^2=a^2(\mathrm{tg^2\,}t+1)\\\\\Longrightarrow\quad u^2+a^2=a^2\sec^2 t\\\\\Longrightarrow\quad \sqrt{u^2+a^2}=a\sec t

Substituindo em (i), a integral fica

    \displaystyle =\int\frac{(a\,\mathrm{tg\,}t-\frac{1}{2})^2}{a\sec t}\cdot a\sec^2 t\,dt\\\\\\=\int \Big(a\,\mathrm{tg\,}t-\frac{1}{2}\Big)^2\cdot \sec t\,dt\\\\\\=\int \Big(a^2\,\mathrm{tg^2\,}t-a\,\mathrm{tg\,}t+\frac{1}{4}\Big)\cdot \sec t\,dt\\\\\\=a^2\int \mathrm{tg^2\,}t\sec t\,dt-a\int \mathrm{tg\,}t\sec t\,dt+\frac{1}{4}\int \sec t\,dt\qquad (ii)

Vamos avaliar a primeira integral da expressão acima:

    \displaystyle\int \mathrm{tg^2\,}t\sec t\,dt\\\\\\=\int (\sec^2 t-1)\sec t\,dt

Integrando por partes:

    \begin{array}{lcl} v=\sec t&amp;\quad\Longrightarrow\quad&amp;dv=\mathrm{tg\,}t\sec  t\,dt\\\\dw=(\sec^2 t-1)\,dt&amp;\quad\Longleftarrow\quad&amp;w=\mathrm{tg\,}t-t\end{array}

Logo,

    \displaystyle\int \mathrm{tg^2\,}t\sec t\,dt=\sec t(\mathrm{tg\,}t-t)-\int (\mathrm{tg\,}t-t)\,\mathrm{tg\,}t\sec t\,dt\\\\\\\Longrightarrow\quad \int \mathrm{tg^2\,}t\sec t\,dt=\sec t\,\mathrm{tg\,}t-t\sec t-\int\mathrm{tg^2\,}t\sec t\,dt+\int t\,\mathrm{tg\,}t\sec t\,dt\\\\\\\Longrightarrow\quad 2\int \mathrm{tg^2\,}t\sec t\,dt=\sec t\,\mathrm{tg\,}t-t\sec t+\int t\,\mathrm{tg\,}t\sec t\,dt

    \displaystyle \Longrightarrow\quad \int \mathrm{tg^2\,}t\sec t\,dt=\frac{1}{2}\sec t\,\mathrm{tg\,}t-\frac{1}{2}\,t\sec t+\frac{1}{2}\int t\,\mathrm{tg\,}t\sec t\,dt\qquad (iii)

Integrando por partes novamente:

    \begin{array}{lcl} v=t&amp;\quad\Longrightarrow\quad&amp;dv=dt\\\\dw=\mathrm{tg\,}t\sec t\,dt&amp;\quad\Longleftarrow\quad&amp;w=\sec t\end{array}

Substituindo em (iii):

    \displaystyle \Longrightarrow\quad \int \mathrm{tg^2\,}t\sec t\,dt=\frac{1}{2}\sec t\,\mathrm{tg\,}t-\frac{1}{2}\,t\sec t+\frac{1}{2}\left(t\sec t-\int\sec t\,dt\right)\\\\\\\Longrightarrow\quad \int \mathrm{tg^2\,}t\sec t\,dt=\frac{1}{2}\sec t\,\mathrm{tg\,}t-\frac{1}{2}\,t\sec t+\frac{1}{2}\,t\sec t-\frac{1}{2}\int\sec t\,dt\\\\\\\Longrightarrow\quad \int \mathrm{tg^2\,}t\sec t\,dt=\frac{1}{2}\sec t\,\mathrm{tg\,}t-\frac{1}{2}\ln |\sec t+\mathrm{tg\,}t|+C_1

Voltando a (ii), a integral fica

    \displaystyle =a^2\left(\frac{1}{2}\sec t\,\mathrm{tg\,t}-\frac{1}{2}\ln |\mathrm{tg\,}t+\sec t|\right)-a\int \mathrm{tg\,}t\sec t\,dt+\frac{1}{4}\int \sec t\,dt\\\\\\
=a^2\left(\frac{1}{2}\sec t\,\mathrm{tg\,t}-\frac{1}{2}\ln |\mathrm{tg\,}t+\sec t|\right)-a\sec t+\frac{1}{4}\ln |\sec t+\mathrm{tg\,}t|+C_2\\\\\\
=\frac{a^2}{2}\sec t\,\mathrm{tg\,}t-a\sec t+\left(-\,\frac{a^2}{2}+\frac{1}{4}\right)\ln |\sec t+\mathrm{tg\,}t|+C_2\qquad (iv)

Agora, temos que voltar à variável x. Substituindo de volta sec t e tg t, e o valor da constante a, obtemos

    =\dfrac{a^2}{2}\cdot \dfrac{\sqrt{u^2+a^2}}{a}\cdot \dfrac{u}{a}-a\cdot \dfrac{\sqrt{u^2+a^2}}{a}+\left(-\,\dfrac{a^2}{2}+\dfrac{1}{4}\right)\ln\left|\dfrac{\sqrt{u^2+a^2}}{a}+\dfrac{u}{a}\right|+C_2

    =\dfrac{1}{2}\,u\sqrt{u^2+a^2}-\sqrt{u^2+a^2}+\left(-\,\dfrac{a^2}{2}+\dfrac{1}{4}\right)\!\ln\left|\dfrac{\sqrt{u^2+a^2}+u}{a}\right|+C_2  

   =\left(\dfrac{1}{2}\,u-1\right)\!\sqrt{u^2+a^2}+\left(\dfrac{1-2a^2}{4}\right)\!\ln\left|\sqrt{u^2+a^2}+u\right|-\left(\dfrac{1-2a^2}{4}\right)\!\ln a+C_2

    =\left(\dfrac{1}{2}\,u-1\right)\!\sqrt{u^2+a^2}+\left(\dfrac{1-2a^2}{4}\right)\!\ln\left|\sqrt{u^2+a^2}+u\right|+C

    =\left[\dfrac{1}{2}\Big(x+\dfrac{1}{2}\Big)-1\right]\!\sqrt{x^2+x+1}-\dfrac{1}{8}\ln\left|\sqrt{x^2+x+1}+\Big(x+\dfrac{1}{2}\Big)\right|+C\\\\\\
=\left(\dfrac{1}{2}\,x-\dfrac{3}{4}\right)\!\sqrt{x^2+x+1}-\dfrac{1}{8}\ln\left|\sqrt{x^2+x+1}+\Big(x+\dfrac{1}{2}\Big)\right|+C\\\\\\

    =\dfrac{1}{2}\Big(x-\dfrac{3}{2}\Big)\sqrt{x^2+x+1}-\dfrac{1}{8}\ln\left|\sqrt{x^2+x+1}+\Big(x+\dfrac{1}{2}\Big)\right|+C

Dúvidas? Comente.

Bons estudos!


myrla35: oie tudo ? você poderia me ajudar em uma questão de matematica? pfv estou precissando muito
Perguntas interessantes