ache o conjugado de z = (1+2i).(i-4)
Soluções para a tarefa
Respondido por
2
Oi Bru.
![z=(1+2i)*(i-4)\\ z=i-4+2i^{ 2 }-8i\\ z=-4-7i+2i^{ 2 }\\ \\ i^{ 2 }=-1\\ \\ z=-4-7i+2(-1)\\ z=-4-7i-2\\ z=-6-7i\\ \\ \overline { z } =a-bi\\ \overline { z } =-6+7i z=(1+2i)*(i-4)\\ z=i-4+2i^{ 2 }-8i\\ z=-4-7i+2i^{ 2 }\\ \\ i^{ 2 }=-1\\ \\ z=-4-7i+2(-1)\\ z=-4-7i-2\\ z=-6-7i\\ \\ \overline { z } =a-bi\\ \overline { z } =-6+7i](https://tex.z-dn.net/?f=z%3D%281%2B2i%29%2A%28i-4%29%5C%5C+z%3Di-4%2B2i%5E%7B+2+%7D-8i%5C%5C+z%3D-4-7i%2B2i%5E%7B+2+%7D%5C%5C+%5C%5C+i%5E%7B+2+%7D%3D-1%5C%5C+%5C%5C+z%3D-4-7i%2B2%28-1%29%5C%5C+z%3D-4-7i-2%5C%5C+z%3D-6-7i%5C%5C+%5C%5C+%5Coverline+%7B+z+%7D+%3Da-bi%5C%5C+%5Coverline+%7B+z+%7D+%3D-6%2B7i)
BrubzVillalva:
muito obg
Perguntas interessantes