Ache a equação da elipse que tem o eixo maior igual a 10 e focos F1 (2,-1) E F2(2,5)
RESPOSTA:
25x²+16y²-100x-64y-236=0
Soluções para a tarefa
Respondido por
28
O centro da elipse é o ponto médio do segmento formado pelos focos
![C=\dfrac{F_{1}+F_{2}}{2}\\\\\\C=\dfrac{(2,-1)+(2,5)}{2}\\\\\\C=\dfrac{(2+2,-1+5)}{2}\\\\\\C=\dfrac{1}{2}(4,4)\\\\\\\boxed{\boxed{C=(2,2)}} C=\dfrac{F_{1}+F_{2}}{2}\\\\\\C=\dfrac{(2,-1)+(2,5)}{2}\\\\\\C=\dfrac{(2+2,-1+5)}{2}\\\\\\C=\dfrac{1}{2}(4,4)\\\\\\\boxed{\boxed{C=(2,2)}}](https://tex.z-dn.net/?f=C%3D%5Cdfrac%7BF_%7B1%7D%2BF_%7B2%7D%7D%7B2%7D%5C%5C%5C%5C%5C%5CC%3D%5Cdfrac%7B%282%2C-1%29%2B%282%2C5%29%7D%7B2%7D%5C%5C%5C%5C%5C%5CC%3D%5Cdfrac%7B%282%2B2%2C-1%2B5%29%7D%7B2%7D%5C%5C%5C%5C%5C%5CC%3D%5Cdfrac%7B1%7D%7B2%7D%284%2C4%29%5C%5C%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7BC%3D%282%2C2%29%7D%7D)
Achando 'c' (a distância entre um foco e o centro da elipse):
![c=d(F_{1},C)\\\\c=\sqrt{(2-2)^{2}+(-1-2)^{2}}\\\\c=\sqrt{0^{2}+(-3)^{2}}\\\\c=\sqrt{9}\\\\\boxed{\boxed{c=3}} c=d(F_{1},C)\\\\c=\sqrt{(2-2)^{2}+(-1-2)^{2}}\\\\c=\sqrt{0^{2}+(-3)^{2}}\\\\c=\sqrt{9}\\\\\boxed{\boxed{c=3}}](https://tex.z-dn.net/?f=c%3Dd%28F_%7B1%7D%2CC%29%5C%5C%5C%5Cc%3D%5Csqrt%7B%282-2%29%5E%7B2%7D%2B%28-1-2%29%5E%7B2%7D%7D%5C%5C%5C%5Cc%3D%5Csqrt%7B0%5E%7B2%7D%2B%28-3%29%5E%7B2%7D%7D%5C%5C%5C%5Cc%3D%5Csqrt%7B9%7D%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7Bc%3D3%7D%7D)
Achando 'a' (semieixo maior):
![a=\dfrac{eixo~maior}{2}=\dfrac{10}{2}=5 a=\dfrac{eixo~maior}{2}=\dfrac{10}{2}=5](https://tex.z-dn.net/?f=a%3D%5Cdfrac%7Beixo%7Emaior%7D%7B2%7D%3D%5Cdfrac%7B10%7D%7B2%7D%3D5)
Achando 'b' (semieixo menor da elipse) pelo Teorema de Pitágoras:
![a^{2}=b^{2}+c^{2}\\\\5^{2}=b^{2}+3^{2}\\\\25-9=b^{2}\\\\b^{2}=16 a^{2}=b^{2}+c^{2}\\\\5^{2}=b^{2}+3^{2}\\\\25-9=b^{2}\\\\b^{2}=16](https://tex.z-dn.net/?f=a%5E%7B2%7D%3Db%5E%7B2%7D%2Bc%5E%7B2%7D%5C%5C%5C%5C5%5E%7B2%7D%3Db%5E%7B2%7D%2B3%5E%7B2%7D%5C%5C%5C%5C25-9%3Db%5E%7B2%7D%5C%5C%5C%5Cb%5E%7B2%7D%3D16)
_________________
Equação geral da elipse:
![\dfrac{(y-k)^{2}}{a^{2}}+\dfrac{(x-h)^{2}}{b^{2}}=1 \dfrac{(y-k)^{2}}{a^{2}}+\dfrac{(x-h)^{2}}{b^{2}}=1](https://tex.z-dn.net/?f=%5Cdfrac%7B%28y-k%29%5E%7B2%7D%7D%7Ba%5E%7B2%7D%7D%2B%5Cdfrac%7B%28x-h%29%5E%7B2%7D%7D%7Bb%5E%7B2%7D%7D%3D1)
(A elipse tem eixo focal vertical, já que os focos possuem x iguais)
OBS: C(h,k) é o centro da elipse
Então, substituindo 'h', 'k', 'a' e 'b', temos:
![\dfrac{(y-2)^{2}}{5^{2}}+\dfrac{(x-2)^{2}}{16}=1\\\\\\\dfrac{y^{2}-4y+4}{25}+\dfrac{x^{2}-4x+4}{16}=1 \dfrac{(y-2)^{2}}{5^{2}}+\dfrac{(x-2)^{2}}{16}=1\\\\\\\dfrac{y^{2}-4y+4}{25}+\dfrac{x^{2}-4x+4}{16}=1](https://tex.z-dn.net/?f=%5Cdfrac%7B%28y-2%29%5E%7B2%7D%7D%7B5%5E%7B2%7D%7D%2B%5Cdfrac%7B%28x-2%29%5E%7B2%7D%7D%7B16%7D%3D1%5C%5C%5C%5C%5C%5C%5Cdfrac%7By%5E%7B2%7D-4y%2B4%7D%7B25%7D%2B%5Cdfrac%7Bx%5E%7B2%7D-4x%2B4%7D%7B16%7D%3D1)
Multiplicando todos os membros por (16 . 25):
![16\cdot(y^{2}-4y+4)+25\cdot(x^{2}-4x+4)=16\cdot25\\\\16y^{2}-64y+64+25x^{2}-100x+100=400\\\\25x^{2}+16y^{2}-100x-64y+164-400=0\\\\\boxed{\boxed{25x^{2}+16y^{2}-100x-64y-236=0}} 16\cdot(y^{2}-4y+4)+25\cdot(x^{2}-4x+4)=16\cdot25\\\\16y^{2}-64y+64+25x^{2}-100x+100=400\\\\25x^{2}+16y^{2}-100x-64y+164-400=0\\\\\boxed{\boxed{25x^{2}+16y^{2}-100x-64y-236=0}}](https://tex.z-dn.net/?f=16%5Ccdot%28y%5E%7B2%7D-4y%2B4%29%2B25%5Ccdot%28x%5E%7B2%7D-4x%2B4%29%3D16%5Ccdot25%5C%5C%5C%5C16y%5E%7B2%7D-64y%2B64%2B25x%5E%7B2%7D-100x%2B100%3D400%5C%5C%5C%5C25x%5E%7B2%7D%2B16y%5E%7B2%7D-100x-64y%2B164-400%3D0%5C%5C%5C%5C%5Cboxed%7B%5Cboxed%7B25x%5E%7B2%7D%2B16y%5E%7B2%7D-100x-64y-236%3D0%7D%7D)
Achando 'c' (a distância entre um foco e o centro da elipse):
Achando 'a' (semieixo maior):
Achando 'b' (semieixo menor da elipse) pelo Teorema de Pitágoras:
_________________
Equação geral da elipse:
(A elipse tem eixo focal vertical, já que os focos possuem x iguais)
OBS: C(h,k) é o centro da elipse
Então, substituindo 'h', 'k', 'a' e 'b', temos:
Multiplicando todos os membros por (16 . 25):
Perguntas interessantes
Inglês,
1 ano atrás
Português,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Geografia,
1 ano atrás